% vim: tw=50 % 21/01/2022 - 11AM \section{Limits and Convergence [b]} Review from Numbers and Sets: sequences $a_n$, $(a_n)_{n = 1}^\infty$, $a_n \in \RR$. \begin{definition*} We say that $a_n \to a$ as $n \to \infty$ if given $\eps > 0$, $\exists \,\, N$ such that $|a_n - a| < \eps$ for all $n \ge N$. Note $N = N(\eps)$. \end{definition*} \begin{definition*}[Monotonic sequence] A sequence is \emph{increasing} if $a_n \le a_{n + 1}$ for all $n$. Similarly, a sequence is \emph{decreasing} if $a_n \ge a_{n + 1}$ for all $n$. The sequence is \emph{strictly increasing / decreasing} if equality never occurs. A sequence is \emph{monotonic} if it is either increasing or decreasing. \end{definition*} \begin{axiom*}[Fundamental Axiom of the Real Numbers] Given an increasing sequence $(a_n)_{n = 1}^\infty$ and some $A \in \RR$ such that $a_n \le A$ for all $n$, there exists $a \in \RR$ such that $a_n \to a$ as $n \to \infty$. So an increasing sequence of real numbers bounded above \emph{converges}. Equivalently a decreasing sequence of real numbers bounded below converges. Equivalent also to: ``Every non-empty of real numbers bounded above has a \emph{supremum}''. (LUBA = Least Upper Bound Axiom). \end{axiom*} \begin{definition*}[supremum] Given $S \subset \RR$, $S \neq \emptyset$ we say that $\sup S = K$ if \begin{enumerate}[(i)] \item $x \le K \,\, \forall \,\, x \in S$ \item given $\epsilon > 0$, $\exists x \in S$ such that $x > K - \eps$. \end{enumerate} \begin{note*} Supremum is unique. We also can define a similar notion of infimum. \end{note*} \end{definition*} \begin{lemma} \begin{enumerate}[(i)] \item The limit is unique. That is, if $a_n \to a$ and $a_n \to b$, then $a = b$. \item If $a_n \to a$ as $n \to \infty$ and $n_1 < n_2 < n_3 < \cdots$, then $a_{n_j} \to a$ as $j \to \infty$ (subsequences converge to the same limit). \item If $a_n = c \,\,\forall\,\, n$, then $a_n \to c$ as $n \to \infty$. \item If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$. \item If $a_n \to a$ and $b_n \to b$, then $a_nb_n \to ab$. \item If $a_n \to a$, $a_n \neq 0 \,\,\forall n$ and $a \neq 0$, then $\frac{1}{a_n} \to \frac{1}{a}$. \item If $a_n \le A \,\,\forall n$ and $a_n \to a$, then $a \le A$. \end{enumerate} \end{lemma} \begin{proof} We only do (i), (ii) and (v) and leave the others as exercise. \begin{enumerate}[(i)] \item[(i)] given $\eps > 0$, $\exists n_1$ such that $|a_n - a| < \eps \,\,\forall\,\, n \ge n_1$, and $\exists n_2$ such that $|a_n - b| < \eps \,\,\forall\,\,n \ge n_2$. Then let $N = \max\{n_1, n_2\}$. Then if $n \ge N$, \[ |a - b| \le |a_n - a| + |a_n - b| < 2\eps .\] If $a \neq b$, take $\eps = \frac{|a - b|}{3}$, then by triangle inequality \[ |a - b| < \frac{2}{3}|a - b| \] which is a contradiction if $a \neq b$, hence $a = b$. \item[(ii)] given $\eps > 0$, $\exists N$ such that $|a_n - a| < \eps, \,\,\forall\,\, n \ge N$ since $n_j \ge j$ by induction, we have $|a_{n_j} - a| < \eps \,\,\forall\,\, j \ge N$, i.e. $a_{n_j} \to a$ as $j \to \infty$. \item[(v)] $|a_nb_n - ab| \le |a_nb_n - a_nb| + |a_nb - ab| = |a_n||b_n - b| + |b||a_n - a|$. Since $a_n \to a$, given $\eps > 0$, $\exists n_1$ such that $|a_n - a| < \eps \,\,\forall n \ge n_1$, and similarly since $b_n \to b$ $\exists n_2$ such that $|b_n - b| < \eps \,\,\forall\,\, n \ge n_2$. If $n \ge n_1(1)$, $|a_n - a| < 1$, so $|a_n| \le |a| + 1$. Hence \[ |a_nb_n - ab| \le \epsilon(|a| + 1 + |b|) \] for all $n \ge n_3(\epsilon) = \max\{n_1(1), n_1(\epsilon), n_2(\epsilon)\}$. \end{enumerate} \end{proof} \begin{lemma} $\frac{1}{n} \to 0$ as $n \to \infty$. \end{lemma} \begin{proof} $\frac{1}{n}$ is a decreasing sequence bounded by below, so by the Fundamental Axiom it has a limit $a$. We claim that $a = 0$. Note that \[ \frac{1}{2n} = \half \times \frac{1}{n} \to \frac{a}{2} \] by Lemma 1.1(v). But $\frac{1}{2}$ is a subsequence, so by Lemma 1.1(ii), $\frac{1}{2n} \to a$. By uniqueness of limits (Lemma 1.1(i)), we have $a = \frac{a}{2} \implies a = 0$. \end{proof} \begin{remark*} The definition of limit of a sequence makes perfect sense for $a_n \in \CC$. \end{remark*} \begin{definition*} $a_n \to a$ if given $\eps > 0$, $\exists N$ such that $\forall\,\, n \ge N$, $|a_n - a| < \eps$. \end{definition*} \noindent The first six parts of Lemma 1.1 are the same over $\CC$. The last one does not make sense (over $\CC$) since it uses the \emph{order} of $\RR$.