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Start of
lecture 1 1 Limits and Convergence [b]

Review from Numbers and Sets: sequences an, (an)
∞
n=1, an ∈ R.

Definition. We say that an → a as n → ∞ if given ε > 0, ∃ N such that |an−a| < ε
for all n ≥ N . Note N = N(ε).

Definition (Monotonic sequence). A sequence is increasing if an ≤ an+1 for all n.
Similarly, a sequence is decreasing if an ≥ an+1 for all n. The sequence is strictly
increasing / decreasing if equality never occurs. A sequence is monotonic if it is
either increasing or decreasing.

Axiom (Fundamental Axiom of the Real Numbers). Given an increasing sequence
(an)

∞
n=1 and some A ∈ R such that an ≤ A for all n, there exists a ∈ R such

that an → a as n → ∞. So an increasing sequence of real numbers bounded
above converges. Equivalently a decreasing sequence of real numbers bounded below
converges. Equivalent also to: “Every non-empty of real numbers bounded above
has a supremum”. (LUBA = Least Upper Bound Axiom).

Definition (supremum). Given S ⊂ R, S ̸= ∅ we say that supS = K if

(i) x ≤ K ∀ x ∈ S

(ii) given ϵ > 0, ∃x ∈ S such that x > K − ε.

Note. Supremum is unique. We also can define a similar notion of infimum.
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Lemma 1.1. (i) The limit is unique. That is, if an → a and an → b, then a = b.

(ii) If an → a as n → ∞ and n1 < n2 < n3 < · · · , then anj → a as j → ∞
(subsequences converge to the same limit).

(iii) If an = c ∀ n, then an → c as n → ∞.

(iv) If an → a and bn → b, then an + bn → a+ b.

(v) If an → a and bn → b, then anbn → ab.

(vi) If an → a, an ̸= 0 ∀n and a ̸= 0, then 1
an

→ 1
a .

(vii) If an ≤ A ∀n and an → a, then a ≤ A.

Proof. We only do (i), (ii) and (v) and leave the others as exercise.

(i) given ε > 0, ∃n1 such that |an − a| < ε ∀ n ≥ n1, and ∃n2 such that |an − b| <
ε ∀ n ≥ n2. Then let N = max{n1, n2}. Then if n ≥ N ,

|a− b| ≤ |an − a|+ |an − b| < 2ε.

If a ̸= b, take ε = |a−b|
3 , then by triangle inequality

|a− b| < 2

3
|a− b|

which is a contradiction if a ̸= b, hence a = b.

(ii) given ε > 0, ∃N such that |an − a| < ε, ∀ n ≥ N since nj ≥ j by induction, we
have |anj − a| < ε ∀ j ≥ N , i.e. anj → a as j → ∞.

(v) |anbn − ab| ≤ |anbn − anb| + |anb − ab| = |an||bn − b| + |b||an − a|. Since an → a,
given ε > 0, ∃n1 such that |an − a| < ε ∀n ≥ n1, and similarly since bn → b ∃n2

such that |bn − b| < ε ∀ n ≥ n2. If n ≥ n1(1), |an − a| < 1, so |an| ≤ |a|+1. Hence

|anbn − ab| ≤ ϵ(|a|+ 1 + |b|)

for all n ≥ n3(ϵ) = max{n1(1), n1(ϵ), n2(ϵ)}.

Lemma 1.2. 1
n → 0 as n → ∞.

Proof. 1
n is a decreasing sequence bounded by below, so by the Fundamental Axiom it

has a limit a. We claim that a = 0. Note that

1

2n
=

1

2
× 1

n
→ a

2

by Lemma 1.1(v). But 1
2 is a subsequence, so by Lemma 1.1(ii), 1

2n → a. By uniqueness
of limits (Lemma 1.1(i)), we have a = a

2 =⇒ a = 0.
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Remark. The definition of limit of a sequence makes perfect sense for an ∈ C.

Definition. an → a if given ε > 0, ∃N such that ∀ n ≥ N , |an − a| < ε.

The first six parts of Lemma 1.1 are the same over C. The last one does not make sense
(over C) since it uses the order of R.

Start of
lecture 2 The Bolzano-Weierstrass Theorem

Theorem 1.3. If xn ∈ R and there exists K such that |xn| ≤ K ∀ n, then we can
find n1 < n2 < n3 < · · · and x ∈ R such that xnj → x as j → ∞.

In other words every bounded sequence has a convergent subsequence.

Remark. We say nothing about uniqueness of x, for example xn = (−1)n, then
x2n+1 → −1 and x2n → 1.

Proof. Set [a1, b1] = [−K,K]. Let cn = an+bn
2 for all n. Consider the following possibili-

ties:

(1) x ∈ [a1, c1] for infinitely many values of n.

(2) xn ∈ [c1, b1] for infinitely many values of n.

(1) and (2) could hold at the same time. But if (1) holds, we set a2 = a1 and b2 = c1. If
(1) fails, we have that (2) must hold and we set a2 = c1 and b2 = b1. Proceed inductively
to construct sequences an, bn such that xm ∈ [an, bn] for infinitely many values of m.

an−1 ≤ an ≤ bn ≤ bn−1

bn − an =
bn−1 − an−1

2
(∗)

(bisection method). Note that an is an increasing sequence and bounded, and bn is a
decreasing sequence and bounded, so by the Fundamental Axiom, an → a ∈ [a1, b1] and
bn → b ∈ [a1, b1]. Using (∗),

b− a =
b− a

2
=⇒ a = b.

Since xm ∈ [an, bn] for infinitely many values of m, having chosen nj such that xnj ∈
[aj , bj ], there is nj+1 > nj such that xnj+1 ∈ [aj+1, bj+1] (I have an “unlimited supply”!)
Since aj ≤ xnj ≤ bj , we have xnj → a.

4



Cauchy Sequences

Definition (Cauchy Sequence). an ∈ R is called a Cauchy sequence if given ε > 0,
∃ N > 0 such that |an − am| < ε ∀ n,m ≤ N . (Note: N = N(ε).)

Lemma 1.4. A convergent sequence is a Cauchy sequence.

Proof. If an → a, given ε > 0, ∃ N such that ∀ n ≥ N , |an − a| < ε. Take m,n ≥ N ,
then

|an − am| ≤ |an − a|+ |am − a| < 2ε.

Theorem 1.5. Every Cauchy sequence is convergent.

Proof. First we note that if an is Cauchy, then it is bounded. Take ε = 1, N = N(1) in
the Cauchy property, then

|an − am| < 1, ∀ n,m ≥ N(1)

|am| ≤ |am − aN |+ |aN | < 1 + |aN | ∀ m ≥ N.

Let K = max{1 + |aN |, |an|, n = 1, 2, . . . , N − 1}. Then |an| ≤ K ∀ n. So by the
Bolzano-Weierstrass theorem, anj→a.

Claim: an → a.
We now prove the claim: given ε > 0, ∃ j0 such that ∀ j ≥ j0

|anj − a| < ε.

Also, ∃ N(ε) such that |am−an| < ε ∀ m,n ≥ N(ε). Take j such that nj ≥ max{N(ε), nj0}.
Then if n ≥ N(ε)

|an − a| ≤ |an − anj |︸ ︷︷ ︸
<ε

+ |anj − a|︸ ︷︷ ︸
<ε

< 2ε.

Summary: in R a sequence is convergent is and only if it is Cauchy.
“old fashioned name”: the “general principle of convergence”.
Useful property: since we do not need to know what the limit is.

Series
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Definition. an ∈ R,C. We say that
∑∞

j=1 aj converges to S if the sequence of
partial sums

SN =
N∑
j=1

aj → S

as N → ∞. We write
∞∑
j=1

aj = S.

If SN does not converge, we say that
∑∞

j=1 aj diverges.

Remark. Nay problem in series is really a problem about the sequence of partial
sums.

Lemma 1.6. (i) If
∑∞

j=1 aj and
∑∞

j=1 bj converge, then so does

∞∑
j=1

(λaj + µbj)

where λ, µ ∈ C.

(ii) Suppose ∃ N such that aj = bj ∀ j ≥ N then either
∑∞

j=1 aj and
∑∞

j=1 bj both
converge or they both diverge (initial terms do not matter).

Proof.

(i) Exercise

(ii) For n ≥ N ,

sn =
n∑

j=1

aj =
N−1∑
j=1

aj +
n∑

j=N

aj

dn =
n∑

j=1

bj =
N−1∑
j=1

bj +
n∑

j=N

bj

=⇒ sn − dn =

N−1∑
j=1

aj −
N−1∑
j=1

bj = constant

So sn converges if and only if dn does.

Start of
lecture 3
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Example (Geometric Series). x ∈ R, set an = xn−1 for n ≥ 1. Now

sn =

n∑
j=1

aj = 1 + x+ x2 + · · ·+ xn−1

Then

sn =

{
1−xn

1−x for x ̸= 1

n for x = 1

xsn = x+ x2 + · · ·+ xn = sn − 1 + xn

sn(1− x) = 1− xn

if |x| < 1, xn → 0 and sn → 1
1−x . If x > 1, xn → ∞ and sn → ∞. (Note sn → ∞ if

given A, there exists N such that sn > A such that sn > A ∀ n ≥ N , and sn → −∞
if given A there exists N such that sn < −A for all n ≥ N .) If x < −1 then sn does
not converge (oscillates). If x = −1 then

sn =

{
1 n odd

0 n even

Thus the geometric series converges if and only if |x| < 1.

To see for example that xn → 0 if |x| < 1, consider first the case 0 < x < 1. Write
1
x = 1 + δ, δ > 0. So

xn =
1

(1 + δ)n
≤ 1

1 + δn
→ 0.

because (1 + δ)n ≥ 1 + nδ from binomial expansion. An easy observation from this is
that:

Lemma 1.7. If
∑∞

j=1 an converges, then limj→∞ aj = 0.

Proof.

sn =
n∑

j=1

aj

Then
an = sn − sn−1.

If sn → a, then an → 0 (since sn−1 → a as well).
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Remark. The converse of lemma 1.7 is false! For example,
∑∞

j=1
1
j diverges (har-

monic series).

sn =
n∑

j=1

1

j

s2n = sn +
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

n+ n
> sn +

1

2

since 1
n+k ≥ 1

2n for k = 1, 2, . . . , n. So if sn → a, then s2n → a also, and thus

a ≥ a+ 1
2 ××××

Series of Non-negative Terms

an ≥ 0. Basic result:

Theorem 1.8 (The comparison test). Suppose that 0 ≤ bn ≤ an ∀ n. Then if∑∞
j=1 aj converges, then so does

∑∞
j=1 bj .

Proof. Let sn =
∑N

j=1 aj and let dN =
∑N

j=1 bj . Since bn ≤ an we have that dN ≤ sN .
But sN → s, so dN ≤ sN ≤ s ∀ N . Also, dN is an increasing sequence bounded above,
hence dN converges.

Example.
∞∑
j=1

1

n2

1

n2
<

1

n(n− 1)︸ ︷︷ ︸
n≥2

=
1

n− 1
− 1

n
= an

So
N∑
j=2

an = 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

N − 1
− 1

N
= 1− 1

N
→ 1

So by comparison,
∑N

j=1
1
n2 converges. In fact we get that

∞∑
j=1

1

n2
≤ 1 + 1 = 2.
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Theorem 1.9 (Root test / Cauchy’s test for convergence). Assume an ≥ 0 and

a
1/n
n → a as n → ∞. Then if a < 1,

∑
an converges; if a > 1,

∑
an diverges.

Remark. Nothing can be said if a = 1 (examples coming up).

Proof. If a < 1, choose a < r < 1. By definition of limit and hypothesis, there exists N
such that for all n ≥ N ,

a1/nn < r =⇒ an < rn

But since r < 1, the geometric series
∑

rn converges, so by theorem 1.8,
∑

an converges.

If a > 1, then for n ≥ N , then a
1/n
n > 1 =⇒ an > 1, thus

∑
an diverges (since an does

not tend to zero).

Theorem 1.10 (Ratio test / D’Alembert’s test). Suppose an > 0 and an+1

an
→ ℓ. If

ℓ < 1,
∑

an converges. If ℓ > 1,
∑

an converges.

Note. As before, nothing can be said for ℓ = 1.

Proof. Suppose ℓ < 1 and choose r with ℓ < r < 1. Then there exists N such that for
all n ≥ N ,

an+1

an
< r

Therefore
an =

an
an−1

an−1

an−2
· · · aN+1

aN
aN < aNrn−N

=⇒ an < Krn

with K independent of n. Since
∑

rn converges, so does
∑

an by theorem 1.8. If ℓ > 1,
choose 1 < r < ℓ, then an+1

an
> r for all n ≥ N , and as before

an =
an
an−1

an−1

an−2
· · · aN+1

aN
aN > aNrn−N > aN

so
∑

an diverges.
Start of
lecture 4 Examples

•
∑∞

j=1
j
2j
. Then

an+1

an
=

n+ 1

2n+1
· 2

n

n
=

n+ 1

2n
→ 1

2
< 1.

So we have convergence by ratio test.
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•
∑∞

j=1
1
n diverges, and

∑∞
j=1

1
n2 converges. Note ratio test gives limit 1 in both

cases, so inconclusive if limit is 1. Since n1/n → 1 as n → ∞, the root test is also
inconclusive when limit is 1. To see this limit, write

n1/n = 1 + δn, δn > 0.

n = (1 + δn)
n >

n(n− 1)

2
δ2n

(binomial expansion)

=⇒ δ2n <
2

n− 1
=⇒ δn → 0

•
∑∞

j=1

[
n+1
3n+5

]n
converges by root test since

n+ 1

3n+ 5
→ 1

3
< 1.

Another useful test:

Theorem 1.11 (Cauchy’s Condensation Test). Let an be a decreasing sequence of
positive terms. Then

∑∞
j=1 an converges if and only if

∞∑
j=1

2na2n

converges.

Proof. First we observe that if an is decreasing, then

a2k ≤ a− 2k−1 + i ≤ a2k−1 , 1 ≤ i ≤ 2k−1

(for any k ≥ 1.) Assume now that
∑∞

j=1 aj converges with sum A. Then

2n−1a2n ≤ a2n−1+1 + a2n−1+2 + · · ·+ a2n =
2n∑

m=2n−1

am.

Thus
N∑

n=1

2n−1a2n ≤
N∑

n=1

2n∑
m=2n−1+1

am =
2N∑
m=2

am.

=⇒
N∑

n=1

2na2n ≤ 2

2N∑
m=2

am ≤ 2(A− a1)
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Thus
∑N

n=1 2
na2n being increasing and bounded above, converges. Conversely, assume

that
∑∞

j=1 2
ja2j converges. Then

2n∑
m=2n−1+1

am ≤
2n∑

m=2n−1+1

a2n−1 = 2n−1a2n−1 .

=⇒
2N∑
m=2

am =
N∑

n=1

∑
m=2n−1+1

am ≤
N∑

n=1

2n−1a2n−1 ≤ B.

So
∑N

m=1 am is a bounded increasing sequence and thus it converges.

Examples / Applications

Claim.
∑∞

j=1
1
nk converges if and only if k > 1.

Proof. Note that it is a decreasing sequence of positive terms.

1

(n+ 1)k
<

1

nk
,

(
n

n+ 1

)k

< 1

Now:

2na2n = 2n
[
1

2n

]k
= 2n−nk = (21−k)n

so it is a geometric series with ratio 21−k, and it converges if and only if 21−k < 1, so if
and only if k > 1.

Alternating Series

Theorem 1.12 (Alternating Series Test). If an decreases and tends to zero as
n → ∞, then the series

∑∞
j=1(−1)n+1an converges.

Example.
∑∞

n=1
(−1)n+1

n converges.

Proof. Let sn = a1 − a2 + · · ·+ (−1)n+1an. Note

s2n = (a1 − a2) + (a3 − a4) + · · ·+ (a2n−1 − a2n)︸ ︷︷ ︸
≥0

≥ s2n−2

s2n = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2n−2 − a2n−1)− a2n ≤ a1

11



So s2n is increasing and bounded above, so s2n → s. Also note s2n+1 = s2n + a2n+1 →
s+ 0 = s. This implies that sn converges to s:
Given ε > 0, there exists N1 such that for all n ≥ N1, |s2n − s| < ε and there exists N2

such that for all n ≥ N2, |s2n+1 − s| < ε. Take N = 2max{N1, N2}+ 1. Then if k ≥ N ,
we have |sk − s| < ε, so sk → s.

Start of
lecture 5 Absolute Convergence

Definition. Take an ∈ C. If
∑∞

n=1 |an| is convergent, then the series is called
absolutely convergent.

Note. Since |aN | ≥ 0, we can use the previous tests to check absolute convergence.
This is particularly useful for an ∈ C.

Theorem 1.13. If
∑

an is absolutely convergent, then it is convergent.

Proof. Suppose first an ∈ R. Let

vN =

{
an if an ≥ 0

0 if an < 0

wn =

{
0 if an ≥ 0

−an if an < 0

vn =
|an|+ an

2
, wn =

|an| − an
2

Clearly, vn, wn ≥ 0. Note an = vn − wn, and |an| = vn + wn ≥ vn, wn. So if
∑

|an|
converges, by comparison

∑
vn,

∑
wn also converge, hence

∑
an converges. If an ∈ C,

then an = xn + iyn. Now |xn|, |yn| ≤ |an|, so
∑

xn and
∑

yn are absolutely convergent,
hence

∑
xn and

∑
yn converge. Since an = xn + iyn we have that

∑
an converges as

well.

Examples

(1)
∑ (−1)n+1

n converges but is not absolutely convergent.

(2)
∑∞

n=1
zn

2n for z ∈ C, then if |z| < 2 we have absolute convergence. If |z| ≥ 2,
∣∣ z
2

∣∣n ≥ 1,
so an does not tend to 0, hence the series diverges.
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Definition. If
∑

an converges, but
∑

|an| does not, it is said sometimes, that
∑

an
is conditionally convergent.

“conditional”: because the sum to which the series converge is conditional on the order
in which elements of the sequence are taken. If rearranged, the sum is altered.

Example. (Example Sheet 1, Q7)

(i) 1− 1
2 + 1

3 − 1
4 + · · · .

(ii) 1 + 1
3 − 1

2 + 1
5 + 1

7 − 1
4 + 1

9 + · · · .

Let sn be the partial sum of (i) and tn the partial sum of (ii). Then sn → s > 0,
and tn → 3s

2 .

Rearrangement:

Definition. Let σ be a bijection of the positive integers,

a′n = aσ(n)

is a rearrangement.

Theorem 1.14. If
∑

an is absolutely convergent, every series consisting of the same
terms in any order (i.e. a rearrangement) has the same sum.

Proof. We do the proof first for an ∈ R. Let
∑

a′n be a rearrangement of
∑

an. Let
sn =

∑n
j=1 aj and tn =

∑n
j=1 a

′
j , s =

∑∞
j=1 aj . Suppose first that an ≥ 0. Given n, we

can find q such that sq satisfies
tn ≤ sq ≤ s

Now since tn is an increasing sequence bounded above, tn → t. Clearly t ≤ s. But by
symmetry, s ≤ t, hence t = s.
If an has any sign, consider vn and wn from theorem 1.13. Consider

∑
a′n,

∑
v′n and∑

w′
n. Since

∑
|an| converges, both

∑
vn and

∑
wn converge. Use that vn, wn ≥ 0 to

deduce that
∑

v′n =
∑

vn and
∑

w′
n =

∑
wn. But an = vn − wn hence

∑
an =

∑
a′n.

For the case an ∈ C, write an = xn + iyn. Since |xn|, |yn| ≤ |an|, we have that
∑

xn and∑
yn are absolutely convergent. By the previous case,

∑
x′n =

∑
xn and

∑
y′n =

∑
yn

since a′n = x′n + iy′n =⇒
∑

an =
∑

a′n.
Start of
lecture 6
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2 Continuity [3]

Let E ⊆ C non-empty, f : E → C any function, and let a ∈ E. (This includes the case
in which f Is real-valued and E ⊆ R).

Definition 1. f is continuous at a ∈ E if for every sequence zn ∈ E with zn → a,
we have f(zn) → f(a).

Definition 2. f is continuous at a ∈ E, if given ε > 0, ∃δ > 0 such that if |z−a| < δ,
z ∈ E, then

|f(z)− f(a)| < ε

(ε-δ definition).

We will prove that these two definitions are equivalent.
Proof. We know that given ε > 0, ∃δ > 0 such that |z−a| < δ, z ∈ E, then |f(z)−f(a)| <
ε. Let zn → a. Then ∃n0 such that ∀ n ≥ n0 we have |zn−a| < δ hence |f(zn)−f(a)| < ε
so f(zn) → f(a). For the other direction, assume that f(zn) → f(a) whenever zn → a
(zn ∈ E). Suppose f is not continuous at a according to definition 2. Then:

∃ε > 0 such that ∀ δ > 0, there exists z ∈ E such that |z− a| < δ and |f(z)− f(a)| ≥ ε.

Let δ = 1
n , from the above we get zn such that |zn − a| < 1

n and |f(zn) − f(a)| ≥ ε.
Clearly zn → a, but f(zn) does not tend to f(a) because f(zn)−f(a)| ≥ ε, contradiction.

Proposition 2.1. a ∈ E, g, f : E → C continuous at a¿ Then so are the functions
f(z)+ g(z), f(z)g(z) and λf(z) for any constant λ. In addition if f(z) ̸= 0 ∀ z ∈ E
then 1

f is continuous at a.

Proof. Using definition 1, this is obvious. Using the analogous results for sequences
(lemma 1.1), for example if zn → a then f(zn) → f(a) and g(zn) → g(a) so by lemma
1.1 f(zn) + g(zn) → f(a) + g(a) etc.

The function f(z) = z is continuous, so by using the proposition, we get that every
polynomial is continuous at every point in C.

Note. We say that f is continuous on E if it is continuous at every a ∈ E.

Remark. Still it is instructive to prove proposition 2.1 directly from the ε-δ defi-
nition.
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Next we look at compositions.

Theorem 2.2. Let f : A → C and g : B → C and g : B → C be two functions
such that f(A) ⊂ B. Suppose f is continuous at a ∈ A and g is continuous at f(a).
Then g ◦ f : A → C is continuous at a.

Proof. Take any sequence zn → a. By assumption f(zn) → f(a). Set wn = f(zn) ∈ B,
wn → f(a); thus g(wn) = g(f(zn)) → g(f(a)).

Examples

(1) f : R → R

f(x) =

{
sin
(
1
x

)
x ̸= 0

0 x = 0

sinx is continuous (to be proved later!)
if x ̸= 0, then 2.1 and 2.2 imply that f(x) is continuous at every x ̸= 0. Discontinuous
at 0 because let xn = 1

(2n+ 1
2)π

, then f(xn) = 1, xn → 0 but f(0) = 0.

(2)
f(x) =

{
x sin

(
1
x

)
x ̸= 0

0 x = 0

f is continuous at 0, take xn → 0 then

|f(xn)| ≤ |xn|

so f(xn) → 0 = f(0).

(3)
f(x) =

{
1 x ∈ Q
0 x ̸∈ Q

Discontinuous at every point: if x ∈ Q, take a sequence xn → x with xn ̸∈ Q, then
f(xn) = 0 which doesn’t tend to f(x) = 1. Similarly if x ̸∈ Q, take xn → x with
xn ∈ Q. Then f(xn) = 1 so doesn’t tend to f(x) = 0.

15



Start of
lecture 7 Limit of a function

f : E ⊆ C → C. We wish to define what is meant by limz→a f(z), even when a might
not be in E. For example limz→0

sin z
z , with E = C \ {0}. Also, if E = {0}∪ [1, 2] it does

not make sense to speak about z ∈ E, z ̸= 0, z → 0.

Definition. E ⊆ C, a ∈ C. We say that a is a limit point of E if for any δ > 0,
∃ ∈ E such that 0 < |z − a| < δ.

Remark. a is a limit point if and only if ∃ a sequence zn ∈ E such that zn → a
and zn ̸= a ∀ n. (Check the equivalence!)

Definition. f : E ⊆ C → C and let a ∈ C be a limit point of E. We say that
limz→a f(z) = l (“f tends to l as z tends to a”) if given ε > 0, ∃δ > 0 such that
whenever 0 < |z − a| < δ and z ∈ E, then |f(z)− l| < ε.

Equivalently: f(zn) → l for every sequence zi ∈ E, zn ̸= a and zn → a (proved exactly
as last time with definition 1 ⇐⇒ definition 2).

Remark. Straight from the definitions we have that if a ∈ E is a limit point, then
limz→a f(z) = f(a) if and only if f is continuous at a.

If a ∈ E is isolated (i.e. a ∈ E and is not a limit point) then continuity of f at a always
holds.
The limit of functions has very similar properties to limit of sequences.

(1) It is unique, f(z) → A and f(z) → B as z → a

|A−B| ≤ |A− f(z)|+ |f(z)−B|

if z ∈ E is such that |z − a| < δ1, δ2 then |A − B| < 2ε so A = B. (the ∃ of such z
is consequence of the condition that a is a limit point of E).

(2) f(z) + g(z) → A+B (f(z) → A, g(z) → B as z → a).

(3) f(z)g(z) → AB

(4) if B ̸= 0, f(z)
g(z) → A

B all proved in the same way as before.

16



2.1 The Intermediate Value Theorem

Theorem 2.3. f : [a, b] → R continuous and f(a) ̸= f(b). Then f takes every value
which lies between f(a) and f(b).

(for all f(a) < η < f(b), ∃c ∈ [a, b] such that f(c) = η)

Proof. Without loss of generality we may suppose that f(a) < f(b). Take f(a) < η <
f(b). Let

S = {x ∈ [a, b] : f(x) < η}

a ∈ S, so S ̸= ∅. Clearly S is bounded above by b. Then there is a supremum c where
c ≤ b. By definintion of supremum, given n, there exists xn ∈ S such that

c− 1

n
< xn ≤ c

so, xn → c since xn ∈ S, f(xn) < η. By continuity of f , f(xn) → f(c). Thus f(c) ≤ η.
Now observe that c ̸= b. Then for n large, we can consider c+ 1

n ∈ [a, b] and c+ 1
n → c.

Again by continuity

f

(
c+

1

n

)
→ f(c)

but since c + 1
n > c, f

(
c+ 1

n

)
≥ η (by definition of supremum). Hence f(c) ≥ η and

therefore f(c) = η.

Remark. The theorem is very useful for finding zeros or fixed points.

17



Example. Existence of the n-th root of a positive real number.

f(x) = xn, x ≥ 0

Let y be a positive real number. f is continuous on [0, 1 + y] and

0 = f(0) < y < (1 + y)n = f(1 + y)

so by the Intermediate Value Theorem, ∃c ∈ (0, 1+y) such that f(c) = y, i.e. cn = y
so c is a positive n-root of y. We also have uniqueness! (check)

Start of
lecture 8 Bounds of a continuous function

Theorem 2.4. Let f : [a, b] → R be continuous. Then there exists K such that
|f(x)| ≤ K ∀ x ∈ [a, b].

Proof. We argue by contradiction. Suppose statement is false. Then given any integer
n ≥ 1, there exists xn ∈ [a, b] such that |f(xn)| > n. By Bolzano-Weierstrass, xn has a
convergent subsequence xnj → x. Since a ≤ xnj ≤ b, we must have x ∈ [a, b]. By the
continuity of f , f(xnj ) → f(x) but |f(xnj | > nj → ∞ (as j → ∞). ××××

Theorem 2.5. f : [a, b] ∈ R continuous. Then ∃x1, x2 ∈ [a, b] such that

f(x1) ≤ f(x) ≤ f(x2)

for all x ∈ [a, b]. (“A continuous function on a closed bounded interval is bounded
and attains its bounds”).

Proof. Let A = {f(x) : x ∈ [a, b]} = f([a, b]). By Theorem 2.4, A is bounded. Since it
is clearly non-empty, it has supremum, M . By definition of supremum, given an integer
n ≥ 1, ∃xn ∈ [a, b] such that

M − 1

n
< f(xn) ≤ M (∗)

By Bolzano-Weierstrass, ∃ xnj → x ∈ [a, b]. Since f(xnj ) → M (by (∗)) and f is
continuous, we deduce that f(x) = M . So x2 := x. Similarly for the minimum.

Proof (alternative proof). A = f([a, b]), M = supA as before. Suppose ̸ ∃ x2 such that
f(x2) = M . Let

g(x) =
1

M − f(x)

for x ∈ [a, b]. It is defined and continuous on [a, b]. By Theorem 2.4 applied to g, ∃k > 0
such that

g(x) ≤ K ∀ x ∈ [a, b]

18



This means that f(x) ≤ M − 1
k for all x ∈ [a, b]. This is absurd since it contradicts that

M is the supremum.

Note. Theorems 2.4 and 2.5 are false if the interval is not closed and bounded. For
example, consider

(0, 1], f(x) =
1

x

2.2 Inverse Functions

Definition. f is increasing for x ∈ [a, b] if f(x1) ≤ f(x2) for all x1, x2 such that
a ≤ x1 < x2 ≤ b. If f(x1) < f(x2) we say that f is strictly increasing. Similarly for
decreasing and strictly decreasing.

Theorem 2.6. f : [a, b] → R continuous and strictly increasing function x ∈ [a, b].
Let c = f(a) and d = f(b). Then f : [a, b] → [c, d] is bijective and the inverse
g := f−1 : [c, d] → [a, b] is continuous and strictly increasing.

Remark. A similar theorem holds for strictly decreasing functions.

Proof.

Take c < k < d. From the Intermediate Value Theorem, ∃h such that f(h) = k. Since
f is strictly increasing h is unique. Define g(k) := h and this gives an inverse

g : [c, d] → [a, b]

for f .
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• g is strictly increasing because y1 < y2, y1 = f(x1), y2 = f(x2). If x2 ≤ x1 then
since f is increasing f(x2) ≤ f(x1) and so y2 ≤ y1, contradiction.

• g is continuous because let ε > 0 be given, then let k1 = f(h−ε) and k2 = f(h+ε).
f is strictly increasing so k1 < k < k2. If k1 < y < k2 then h−ε < g(y) < h+ε so g
is continuous at k. Here we took k ∈ (c, d) but a very similar argument establishes
continuity at the endpoints (check!)

Start of
lecture 9
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3 Differentiability [5]

Let f : E ⊆ C → C, most of the time E = interval ⊆ R.

Definition. Let x ∈ E be a point such that ∃xn ∈ E with xn ̸= x ∀ n and xn → x
(i.e. a limit point). f is said to be differentiable at x with derivative f ′(x) if

lim
y→x

f(y)− f(x)

y − x
= f ′(x)

If f is differentiable at each x ∈ E then we say that f is differentiable on E. (Think
of E as an interval or a disc in the case of C).

Important Remarks

(1) Other common notations:
dy

dx

df

dx

(2) f ′(x) = limh→0
f(x+h)−f(x)

h (y = x+ h)

(3) Another look at the definition: Let

ε(h) := f(x+ h)− f(x)− hf ′(x)

then

lim
h→0

ε(h)

h
= 0

f(x+ h) = f(x) + hf ′(x) + ε(h)

Alternative definition of differentiability:

Definition. f is differentiable at x if ∃A and ε such that

f(x+ h) = f(x) + hA+ ε(h)

where

lim
h→0

ε(h)

h
= 0

If such an A exists, then it is unique since

A = lim
h→0

f(x+ h)− f(x)

h

21



(4) If f is differentiable at x then f is continuous at x since ε(h) → 0, so f(x+h) → f(x)
as h → 0.

(5) Alternative ways of writing things:

f(x+ h) = f(x) + hf ′(x) + hεf (h)

with εf (h) → 0 as h → 0. Or

f(x) = f(a) + (x− a)f ′(a) + (x− a)εf (x)

where limx→a εf (x) = 0 as x → a.
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Example. f(x) = |x|, f : R → R.

Clearly f ′(x) = 1 for x > 0 and f ′(x) = −1 for x < 0. Now for x = 0:
Take hn > 0:

lim
n→∞

f(hn)− f(0)

hn
= lim

hn
hn

= 1

Take hn < 0:

lim
n→∞

f(hn)− f(0)

hn
= lim−hn

hn
= −1

so not differentiable at x = 0.

Differentiation of Sums, Products, etc

Proposition 3.1. (i) If f(x) = c for all x ∈ E then f is differentiable with
f ′(x) = 0.

(ii) f, g differentiable at x, then so is f + g and

(f + g)′(x) = f ′(x) + g′(x)

(iii) f, g differentiable at x, then so is fg and

(fg)′(x) = f ′(x)g(x) + f(x)g′(x)

(iv) f differentiable at x and f(x) ̸= 0 ∀ x ∈ E, then 1
f is differentiable at x and(

1

f

)′
(x) = − f ′(x)

[f(x)]2

Proof.
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(i) limh→0
c−c
h = 0

(ii)

lim
h→0

f(x+ h) + g(x+ h)− f(x)− g(x)

h
= lim

h→0

f(x+ h)− f(x)

h
+lim

h→0

g(x+ h)− g(x)

h

= f ′(x) + g′(x)

using properties of limits

(iii) ϕ(x) = f(x)g(x).

lim
h→0

ϕ(x+ h)− ϕ(x)

h
= lim

h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+h)

[
g(x+ h)− g(x)

h

]
+g(x)

[
f(x+ h)− f(x)

h

]
= f(x)g′(x)+f ′(x)g(x)

using standard properties of limits and the fact that f is continuous at x.

(iv) ϕ(x) = 1
f(x)

lim
h→0

ϕ(x+ h)− ϕ(x)

h
= lim

h→0

1
f(x+h) −

1
f(x)

h

= lim
h→0

f(x) = f(x) + h

h
× 1

f(x)f(x+ h)
= − f ′(x)

[f(x)]2

Remark. from (iii) and (iv) we get(
f(x)

g(x)

)′
=

f ′(x)g(x)− f(x)g′(x)

[g(x)]2

Start of
lecture 10 Example. f(x) = xn, n ∈ Z, n > 0. n = 1, clearly f(x) = x and f ′(x) =

1.

Claim. f ′(x) = nxn−1

Proof. Induction (n = 1 is clear). f(x) = xxn = xn+1. So

f ′(x) = xn + x(nxn−1) = (n+ 1)xn

n = 0 can be done separately, and negative n can be done using Proposition
3.1 (iv):

f ′(x) = −(xn)′

x2n
= −nxn−1

x2n
= −nxn−1
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Here is another useful result:

Theorem 3.2 (Chain rule). f : U → C is such that f(x) ∈ V ∀ x ∈ U . If f
is differentiable at a ∈ U and g : V → C is differentiable at f(a), then g ◦ f is
differentiable at a with

(g ◦ f)′(a) = f ′(a)g′(f(a))

Proof. We know:
f(x) = f(a) + (x− a)f ′(a) + εf (x)(x− a)

(where limx→a εf (x) = 0). Also

g(y) = g(b) + (y − b)g′(b) + εg(y)(y − b)

(where limy→b εg(y) = 0).
Let b = f(a). Set εf (a) = 0 and εg(b) = 0 to make them continuous at x = a and y = b.
Now y = f(x) gives

g(f(x)) = g(b) + (f(x)− b)g′(b) + εg(f(x))(f(x)− b)

= g(f(a)) + [(x− a)f ′(a) + εf (x)(x− a)][g′(B) + εg(f(x))]

= g(f(a)) + (x− a)f ′(a)g′(b) + (x− a)[εf (x)g
′(b) + εg(f(x))(f

′(a) + εf (x))]

σ(x) = εf (x)g
′(b)︸ ︷︷ ︸

→0

+ εg(f(x))︸ ︷︷ ︸
→0

(f ′(a) + εf (x))︸ ︷︷ ︸
→f ′(a)

→ 0
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Examples

(1) f(x) = sin(x2), (sinx)′ = cosx

f ′(x) = 2x cos(x2)

(2)

f(x) =

{
x sin

(
1
x

)
x ̸= 0

0 x = 0

From previous lectures f is continuous. It is differentiable at every x ̸= 0 by the
previous theorems. At x = 0,

f(t)− f(0)

t
= sin

(
1

t

)
so the limit does not exist, so f is not differentiable at x = 0.

The Mean Value Theorem

Theorem 3.3 (Rolle’s Theorem). Let f : [a, b] → R continuous on [a, b] and differ-
entiable on (a, b). If f(a) = f(b) then ∃c ∈ (a, b) such that f ′(c) = 0.

Proof. Let M = maxx∈[a,b] f(x) and m = minx∈[a,b] f(x). Recall by Theorem 2.5 that
these values are achieved. Let k = f(a) = f(b). If M = m = k, then f is constant and
f ′(c) = 0 ∀ c ∈ (a, b). If f is not constant then M > k or m < k. Suppose M > k. By
Theorem 2.5 ∃ c ∈ (a, b) such that f(c) = M . If f ′(c) > 0, then there are values to the
right of c for which f(x) > f(c). Why?

f(h+ c)− f(c) = h(f ′(c) + εf (h))

since εf (h) → 0 as h → 0, f ′(c) + εf (h) > 0 for h small. This contradicts that M is the
maximum. Similarly if f ′(c) < 0 there exists x to the left of c for which f(x) > f(c).
Hence f ′(c) = 0.

Start of
lecture 11 Theorem 3.4 (Mean Value Theorem). Let f : [a, b] → R be a continuous function

which is differentiable on (a, b). Then ∃ c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a)

Proof. Write
ϕ(x) = f(x)− kx

choose k such that ϕ(a) = ϕ(b). Hence f(b)− bk = f(a)− ak

=⇒ k =
f(b)− f(a)

b− a

By Rolle’s theorem applied to ϕ, ∃ c ∈ (a, b) such that ϕ′(c) = 0, i.e. f ′(c) = k.
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Remark. We will often write

f(a+ h) = f(a) + hf ′(a+ θh)

for θ ∈ (0, 1). (Note that θ = θ(h)!)

Corollary 3.5. f : [a, b] → R continuous and differentiable on (a, b).

(i) If f ′(x) > 0 ∀ x ∈ (a, b) then f is strictly increasing. (i.e. if b ≥ y > x ≥ a,
then f(y) > f(x))

(ii) If f ′(x) ≥ 0 ∀ x ∈ (a, b) then f is increasing (i.e. if b ≥ y > x ≥ a then
f(y) ≥ f(x))

(iii) If f ′(x) = 0 ∀ x ∈ (a, b) then f is constant on [a, b].

Proof.

(i) MVT
=⇒ f(y)− f(x) = f ′(c)(y − x)

f ′(c) > 0 =⇒ f(y) > f(x)

(ii) Same but f(c) ≥ 0 =⇒ f(y) ≥ f(x).

(iii) Take x ∈ [a, b]. Then use the MVT in [a, x] to get c ∈ (a, x) such that

f(x)− f(a) = f ′(c)(x− a) = 0

=⇒ f(x) = f(a)

so f is continuous.

Inverse Rule / Inverse Function Theorem

Theorem 3.6. f : [a, b] → R continuous and differentiable on (a, b) with f ′(x) >
0 ∀ x ∈ (a, b).
Let f(a) = c and f(b) = d. Then the function f : [a, b] → [c, d] is bijective and f−1

is differentiable with

(f−1)′(x) =
1

f ′(f−1(x))
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Proof. By Corollary 3.5, f is strictly increasing on [a, b]. By Theorem 2.6 ∃ y : [c, d] →
[a, b] which is a continuous strictly increasing inverse of f .
Need to prove that g is differentiable and that

g′(y) =
1

f ′(x)

where y = f(x) and x ∈ (a, b). If k ̸= 0 is given, let h be given by

y + k = f(x+ h)

That is, g(y + k) = x+ h, h ̸= 0. Then

g(y + k)− g(y)

k
=

x+ h− x

f(x+ h)− f(x)

Let k → 0, then h → 0 (since g is continuous), and then

g′(y) = lim
k→0

g(y + k)− g(y)

k
=

1

f ′(x)
.

Example. g(x) = x
1
q (x > 0, q a positive integer).

f(x) = xq, f ′(x) = qxq−1

f is differentiable, then so is g and by Theorem 3.6 (inverse rule)

g′(x) =
1

q(x
1
q )q−1

=
1

q
x

1
q
−1

Remark. If g(x) = xr, r ∈ Q then g′(x) = rxr−1 (check!)

Suppose f, g : [a, b] → R continuous and differentiable on (a, b) and g(a) ̸= g(b), then
the MVT gives us s, t ∈ (a, b) such that

f(b)− f(a)

g(b)− g(a)
=

(b− a)f ′(s)

(b− a)g′(t)
=

f ′(s)

g′(t)

Cauchy showed that we can take s = t.

Theorem 3.7 (Cauchy’s Mean Value Theorem). Let f, g : [a, b] → R be continuous
and differentiable on (a, b). Then ∃ t ∈ (a, b) such that

(f(b)− f(a))g′(t) = f ′(t)(g(b)− g(a))
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Note. We recover the MVT if we take g(x) = x.

Start of
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Proof. Let

ϕ(x) =

∣∣∣∣∣∣
1 1 1

f(a) f(x) f(b)
g(a) g(x) g(b)

∣∣∣∣∣∣
ϕ is continuous on [a, b] and differentiable on (a, b). Also

ϕ(a) = ϕ(b) = 0

By Rolle’s Theorem ∃ t ∈ (a, b) such that

ϕ′(t) = 0

ϕ′(x) = f ′(x)g(b)− g′(x)f(b) + f(a)g′(x)− g(a)f ′(x)

= f ′(x)[g(b)− g(a)] + g′(x)[f(a)− f(b)]

and ϕ′(t) = 0 gives the desired result.
“Lesson”: good choice of auxiliary function + Rolle!

Example (L’Hôpital’s Rule). The example:

lim
x→0

ex − 1

sinx
= lim

x→0

ex − e0

sinx− sin 0

= lim
x→0

et

cos t
= 1

where t = t(x) ∈ (0, x) is chosen using Cauchy’s Mean Value Theorem.

Goal: we want to extend the MVT to include higher order derivatives.

Theorem 3.8 (Taylor’s Theorem With Lagrange’s Remainder). Suppose f and
its derivatives up to order h − 1 are continuous in [a, a + h] and f (n) exists for
x ∈ (a, a+ h). Then

f(a+ h) = f(a) + hf ′(a) +
h2

2!
f ′′(a) + · · ·+ hn−1f (n−1)(a)

(n− 1)!
+

hn

n!
f (n)(a+ θh)

where θ ∈ (0, 1).
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Note. (1) For n = 1 we get back MVT, so this is a “n-th order MVT”.

(2) Rn = hn

n! f
(n)(a+ θh) is known as Lagrange’s form of the remainder

Proof. Define 0 ≤ t ≤ h

ϕ(t) = f(a+ t)− f(a)− tf ′(a)− · · · − tn−1

(n− 1)!
f (n−1)(a)− tn

n!
B

where we choose B such that ϕ(h) = 0. (Note ϕ(0) = 0.) (Recall that in the proof of
the MVT we used f(x)− kx and picked k so we could use Rolle). We see that

ϕ(0) = ϕ; (0) = · · · = ϕ(n−1)(0) = 0

We use Rolle’s Theorem then n-times. Since ϕ(0) = ϕ(h) = 0

Rolle =⇒ ϕ′(h1) = 0 0 < h1 < h

Since ϕ′(0) = 0 = ϕ′(h1)

Rolle =⇒ ϕ′′(h2) = 0 0 < h2 < h1

Finally ϕ(n−1)(0) = ϕ(n−1)(hn−1) = 0

Rolle =⇒ ϕ(n)(hn) = 0 0 < hn < hn−1 < · · · < h

so hn = θh for θ ∈ (0, 1). Now

ϕ(n)(t) = f (n)(a+ t)−B

=⇒ B = f (n)(a+ θh)

Set t = h, θ(h) = 0 and put this value of B in the second line in the proof.

Theorem 3.9 (Taylor’s Theorem with Cauchy’s Form of Remainder). With the
same hypothesis as in Theorem 3.8 and a = 0 (to simplify) we have

f(h) = f(0) + hf ′(0) + · · ·+ hn−1

(n− 1)!
f (n−1)(0) +Rn

where

Rn =
(1− θ)n−1f (n)(θh)hn

(n− 1)!

for θ ∈ (0, 1).
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Proof. Define

F (t) = f(h)− f(t)− (h− t)f ′(t)− · · · − (h− t)n−1f (n−1)(t)

(n− 1)!

for t ∈ [0, h].

F ′(t) = −f ′(t)+f ′(t)−(h−t)f ′′(t)+(h−t)f ′′(t)− (h− t)2

2
f ′′′(t)+· · ·− (h− t)n−1

(n− 1)!
f (n)(t)

=⇒ F ′(t) = −(h− t)n−1

(n− 1)!
f (n)(t)

Set

ϕ(t) = F (t)−
[
h− t

h

]p
F (0)

with p ∈ Z, 1 ≤ p ≤ n. Then ϕ(0) = ϕ(h) = 0. By Rolle’s ∃ θ ∈ (0, 1) such that

ϕ′(θh) = 0

but

ϕ′(θh) = F ′(θh) +
p(1− θ)p−1

h
F (0) = 0

=⇒ 0 = −hn−1(1− θ)n−1

(n− 1)!
f (n)(θh)+

p(1− θ)p−1

h

[
f(h)− f(0)− hf ′(0)− · · · − hn−1

(n− 1)!
f (n−1)(0)

]
=⇒ f(h) = f(0) + hf ′(0) + · · ·+ hn−1

(n− 1)!
f (n−1)(0) +

hn(1− θ)n−1

(n− 1)!p(1− θ)p−1
f (n)(θh)

If p = n we get Lagrange’s remainder. If p = 1 we get Cauchy’s remainder.
Start of
lecture 13 To get a Taylor series for f one needs to show that Rn → 0 as n → ∞. This requires

“estimates” and “effort”.

Remark. Theorems 3.8 and 3.9 work equally well in an interval [a + h, a] with
h < 0.

Example. The binomial series:

f(x) = (1 + x)r, r ∈ Q
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Claim. If |x| < 1, then

(1 + x)r = 1 +

(
r

1

)
x+ · · ·+

(
r

n

)
xn + · · ·

where (
r

n

)
def
=

r(r − 1) · · · (r − n+ 1)

n!

Proof. Clearly
f (n)(x) = r(r − 1) · · · (r − n+ 1)(1 + x)r−n

If r ∈ Z, r ≥ 0, then
f (r+1) ≡ 0

we have a polynomial of degree r. In general (Lagrange)

Rn =
xn

n!
f (n)(θx) =

(
r

n

)
xn

(1 + θx)n−r

(θ ∈ (0, 1))

Note. In principle, θ depends on both x and n.

For 0 < x < 1,
(1 + θx)n−r > 1

for n > r. Now observe that the series∑(
r

n

)
xn

is absolutely convergent for |x| < 1. Indeed by the ratio test

an =

(
r

n

)
xn

=⇒
∣∣∣∣an+1

an

∣∣∣∣ = ∣∣∣∣r(r − 1) · · · (r − n+ 1)(r − n)xn+1

(n+ 1)!

∣∣∣∣ · · · ∣∣∣∣ n!

r(r − 1) · · · (r − n+ 1)xn

∣∣∣∣
=

∣∣∣∣(r − n)x

n+ 1

∣∣∣∣→ |x| < 1

In particular an → 0 so
(
r
n

)
xn → 0. Hence for n > r and 0 < x < 1, we have

|Rn| ≤ |
(
r

n

)
xn| = |an| → 0
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as n → ∞. So the claim is proved in the range 0 ≤ x < 1.
If −1 < x < 0 the argument above breaks, but Cauchy’s form for Rn works:

Rn =
(1− θ)n−1r(r − 1) · · · (r − n+ 1)(1 + θx)r−nxn

(n− 1)!

=
r(r − 1) · · · (r − n+ 1)

(n− 1)!︸ ︷︷ ︸
r(r−1

n−1)

(1− θ)n−1

(1 + θx)n−r
xn

= r

(
r − 1

n− 1

)
xn(1 + θx)r−1


1− θ

1 + θx︸ ︷︷ ︸
<1

∀x∈(−1,1)


n−1

=⇒ |Rn| ≤
∣∣∣∣r(r − 1

n− 1

)
xn
∣∣∣∣ (1 + θx)r−1

Check:
(1 + θx)r−1 ≤ max{1, (1 + x)r−1}

(do it!) Let
Kr = |r|max{1, (1 + x)r−1}

independent of n.

|Rn| ≤ Kr

∣∣∣∣(r − 1

n− 1

)
xn
∣∣∣∣→ 0

because an → 0, thus Rn → 0.

Remarks on Complex Differentiation

Formally for functions f : E ⊆ C → C we have properties for sums, products, chain rule
etc. But it is much more restrictive than differentiability on the real line.
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Example. f : C → C, f(z) = z

If

zn = z +
1

n
→ z

then
f(zn)− f(z)

zn − z
=

z + 1
n − z

z + 1
n − z

= 1

but on the other hand if

zn = z +
i

n
→ z

then
f(zn)− f(z)

zn − z
=

z − i
n − z

z + i
n − z

= −1

so

lim
w→z

f(w)− f(z)

w − z

does not exist, so it is nowhere C-differentiable!

Note. IB Complex Analysis explores the consequences of C-differentiability.

Start of
lecture 14
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4 Power Series [4-5]

We want to look at
∞∑
n=0

anz
n (∗)

z ∈ C, an ∈ C. (The case
∑∞

n=0 an(z − z0)
n, z0 fixed, can be reduced to (∗) by transla-

tion).

Lemma 4.1. If
∑∞

n=0 anz
n
1 converges and |z| < |z1|, then

∑∞
n=0 anz

n converges
absolutely.

Proof. Since
∑∞

n=0 anz
n
1 converges, anz

n
1 → 0. Thus ∃ K > 0 such that |anzn1 | ≤ K ∀ n.

Then

|anzn| = |anzn|
|zn1 |
|zn1 |

≤ K

∣∣∣∣ zz1
∣∣∣∣n︸ ︷︷ ︸

<1

Since the geometric series
∞∑
n=0

∣∣∣∣ zz1
∣∣∣∣n

converges, the lemma follows by comparison.

Using this lemma, we’ll prove that every power series has a radius of convergence.

Theorem 4.2. A power series either

(1) Converges absolutely for all z, or

(2) Converges absolutely for all z inside a circle |z| = R and diverges for all z outside
it, or

(3) Converges for z = 0 only.

Definition. The circle |z| = R is called the circle of convergence and R is the radius
of convergence. In (1) we agree that R = ∞ and in (3) R = 0 (so R ∈ [0,∞]).

Proof. Let

S = {x ∈ R : x ≥ 0 and
∑

anx
n converges}
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Clearly 0 ∈ S. By Lemma 4.1 if x1 ∈ S, then [0, x1] ⊂ S. If S = [0,∞) we have case
(1). If not, there exists a finite supremum for S. Let R = supS < ∞, R ≥ 0. If R > 0,
we’ll prove that if |z1| < R, then

∑
anz

n
1 converges absolutely. Pick R0 such that

|z1| < R0 < R

Then R0 ∈ S and the series converges for z = R0. By Lemma 4.1,
∑

|anzn1 | converges.
Finally we show that if |z2| > R, then the series does not converge for z2. Pick R <
R0 < |z2|. If

∑
anz

n
2 converges then by Lemma 4.1

∑
anR

n
0 would be convergent, which

contradicts that R = supS.

The following lemma is useful for computing R:

Lemma 4.3. If
∣∣∣an+1

an

∣∣∣→ l as n → ∞, then R = 1
l .

Proof. By the ratio test we have absolute convergence if

lim

∣∣∣∣an+1

an

zn+1

zn

∣∣∣∣ < 1

so if |z| < 1
l we have absolute convergence. If |z| > 1

l , the series diverges, again by ratio
test.

Remark. One can also use the root test to get that if |an|1/n → l, then R = 1
l .

Examples

(1)
∑∞

n=0
zn

n! . ∣∣∣∣an+1

an

∣∣∣∣ = n!

(n+ 1)!
=

1

n+ 1
→ 0 = l =⇒ R = ∞

(2) Geometric series,
∑∞

n=0 z
n. R = 1. Note that at |z| = 1 we have divergence.

(3)
∑∞

n=0 n!z
n. ∣∣∣∣an+1

an

∣∣∣∣ = (n+ 1)!

n!
= n+ 1 → ∞ =⇒ R = 0

(4)
∑∞

n=1
zn

n , R = 1. (for z = 1 it diverges (harmonic series)) What happens for |z| = 1
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and z ̸= 1? Consider
∑∞

n=1
zn

n (1− z). Then

sN =

N∑
n=1

(
zn − zn+1

n

)

=

N∑
n=1

zn

n
−

N∑
n=1

zn+1

n

=

N∑
n=1

zn

n
−

N+1∑
n=2

zn

n− 1

= z − zN+1

N
+

N∑
n=2

zn
(
− 1

n(n− 1)

)

if |z| = 1, then zN+1

N → 0 as N → ∞ and
∑ 1

n(n−1) converges, so sN converges.

(5)
∑∞

n=1
zn

n2 , R = 1 but converges for all z with |z| = 1.

Conclusion

In principle nothing can be said about |z| = R and each case has to be discussed
separately. Within the radius of convergence “life is great”. Power series behave as if
“they were polynomials”.

Start of
lecture 15 Theorem 4.4. f(z) =

∑∞
n=0 anz

n has radius of convergence R. Then f is differen-
tiable at all points with |z| < R with

f ′(z) =
∞∑
n=1

nanz
n−1

Proof (non-examinable). We need two auxiliary lemmas:

Lemma 4.5. If
∑∞

n=0 anz
n has radius of convergence R, so do

∞∑
n=1

nanz
n−1 and

∞∑
n=2

n(n− 1)anz
n−2

Lemma 4.6. (i)
(
n
r

)
≤ n(n− 1)

(
n−2
r−2

)
for all 2 ≤ r ≤ n

(ii) |(z + h)n − zn − nhzn−1| ≤ n(n− 1)(|z|+ |h|)n−2|h|2 for all z ∈ C, h ∈ C.
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Proof of 4.4. (after which we prove the lemmas) By Lemma 4.5 we may define

f ′(Z) :=
∞∑
n=1

nanz
n−1 |z| < R

Then we are required to prove that

lim
h→0

f(z + h)− f(z)− hf ′(z)

h
= 0

I :=
f(z + h)− f(z)− hf ′(z)

h

=
1

h

∞∑
n=0

an((z + h)n − zn − hnzn−1)

|I| = 1

|h|

∣∣∣∣∣ limN→∞

N∑
n=0

an((z + h)n − zn − nhzn−1)

∣∣∣∣∣
=

1

|h|
lim

N→∞

∣∣∣∣∣
N∑

n=0

an((z + h)n − zn − nhzn−1)

∣∣∣∣∣
≤ 1

|h|

N∑
n=0

|an||(z + h)n − zn − nhzn−1|

≤ 1

|h|

∞∑
n=2

|an|n(n− 1)(|z|+ |h|)n−2|h|2

= |h|
∞∑
n=2

|an|n(n− 1)(|z|+ |h|)n−2

By Lemma 4.5, for |h| small enough,

∞∑
n=2

|an|n(n− 1)(|z|+ |h|)n−2

converges to A(h), but A(h) ≤ A(r) for |h| < r and |z|+ r < R. Hence

|I| ≤ |h|A(h) ≤ |h|A(r) → 0

as h → 0. Proof of Lemma 4.5. Take z and R0 such that 0 < |z| < R0 < R. Since
anR

n
0 → 0, ∃ K such that |anRn

0 | ≤ K, ∀ n ≥ 0. Thus

|nanzn−1| = n

|z|
|anRn

0 |
∣∣∣∣ zR0

∣∣∣∣n
≤ Kn

|z|

∣∣∣∣ zR0

∣∣∣∣n
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But
∑

n
∣∣∣ z
R0

∣∣∣n converges by the ratio test:

n+ 1

n

∣∣∣∣ zR0

∣∣∣∣n+1 ∣∣∣∣R0

z

∣∣∣∣n =
n+ 1

n

∣∣∣∣ zR0

∣∣∣∣→ ∣∣∣∣ zR0

∣∣∣∣ < 1

if |z| > R, the series diverges since |anzn| is unbounded hence so is n|anzn|. The same
proof applies to

∑∞
n=2 n(n− 1)anz

n−2. Proof of Lemma 4.6.

(i)
(
n
r

)(
n−2
r−2

) =
n!

r!����(n− r)!

(r − 2)!����(n− r)!

(n− 2)!
=

n(n− 1)

r(r − 1)
≤ n(n− 1)

(ii)
(z + h)n − zn − nhzn−1 =

n∑
r=2

(
n

r

)
zn−rhr

Thus

|(z + h)n − zn − nhzn−1| ≤
n∑

r=2

(
n

r

)
|z|n−r|h|r

≤ n(n− 1)

[
n∑

r=2

(
n− 2

r − 2

)
|z|n−r|h|r−2

]
|h|2

= n(n− 1)(|z|+ |h|)n−2|h|2

4.1 The Standard Functions

(exponentials, logs, trigonometric, etc)

We have already seen that
∞∑
n=0

zn

n!

has R = ∞. Define e : C → C by

e(z) =
∞∑
n=0

zn

n!

Straight from Theorem 4.4, e is differentiable and

e′(z) = e(z) .
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Lemma. If F : C → C has F ′(z) = 0 for all z ∈ C, then F is constant.

Proof. Consider g(t) = F (tz). By chain rule:

g′(t) = F ′(tz)z = 0

if g(t) = u(t) + iv(t) then g′(t) = u′(t) + iv′(t) so u′ = v′ = 0. Apply Corollary 3.5 to
get the claim.

Now let a, b ∈ C. Consider
F (z) = e(a+ b− z)e(z)

F ′(z) = −e(a+ b− z)e(z) + e(a+ b− z)e(z) = 0

so F is constant. Use z = b and z = 0 to deduce that

e(a)e(b) = e(a+ b)

Start of
lecture 16

Now we restrict to R:

Theorem 4.7. (i) e : R → R is everywhere differentiable and e′(x) = e(x)

(ii) e(x+ y) = e(x)e(y)

(iii) e(x) > 0 for all x ∈ R

(iv) e is strictly increasing

(v) e(x) → ∞ as x → ∞, e(x) → 0 as x → −∞

(vi) e : R → (0,∞) is a bijection.

Proof.

(i) Already done.

(ii) Clearly
e(x) > 0 ∀x ≥ 0

and e(0) = 1. Also

e(0) = e(x− x) = e(x)e(x) = 1 =⇒ e(−x) > 0

for all x > 0.

(iii) Already done.

(iv) e′(x) = e(x) > 0 so e is strictly increasing.
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(v) e(x) > 1 + x for x > 0 so if x → ∞, e(x) → ∞. For x > 0 since

e(−x) =
1

e(x)

then e(x) → 0 as x → −∞.

(vi) Injectivity follows right away from being strictly increasing. Surjectivity: Take
y ∈ (0 ∈ ∞). From (v) there exist a, b ∈ R such that

e(a) < y < e(b)

so by the Intermediate Value Theorem there exists x ∈ R such that e(x) = y.

Remark. e : (R,+) → ((0,∞),×) is a group isomorphism.

Since e is a bijection we have an inverse:

l : (0,∞) → R

Theorem 4.8. (i) l : (0,∞) → R is a bijection and l(e(x)) = x for all x ∈ R and
r(l(t)) = t for all t ∈ (0,∞).

(ii) l is differentiable and l′(t) = 1
t .

(iii) l(xy) = l(x) + l(y) for all x, y ∈ (0,∞).

Proof.

(i) Obvious from the definition of l.

(ii) Inverse rule (Theorem 3.6) l is differentiable and

l′(t) =
1

e(l(t))
=

1

t

(iii) From IA Groups if e is an isomorphism, so is its inverse.

Now define for α ∈ R and x > 0:

rα(x)
def
= e(αl(x))
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Theorem 4.9. Suppose x, y > 0 and α, β ∈ R. Then

(i) rα(xy) = rα(x)rα(y)

(ii) rα+β(x) = rα(x)rβ(x)

(iii) rα(rβ(x)) = rαβ(x)

(iv) r1(x) = x, r0(x) = 1.

Proof.

(i)
rα(xy) = e(αl(xy))

= e(αl(x) + αl(y))

= e(αl(x))e(αl(y))

= rα(x)rα(y)

(ii)
rα+β(x) = e((α+ β)l(x))

= e(αl(x))e(βl(x))

= rα(x)rβ(x)

(iii)
rα(rβ(x)) = rα(e(βl(x)))

= e(αle(βl(x)))

= e(αβl(x))

rαβ(x)

(iv) r1(x) = e(l(x)) = x, r0(x) = e(0) = 1.

For n ≥ 1, n ∈ Z
rn(x) = r1+···+1(x) = x · · ·x = xn

r1(x)r−1(x) = r0(x) = 1

=⇒ r−1(x) =
1

x

r−n(x) =
1

xn

(r 1
q
(x))q = r1(x) = x

(q ∈ Z, q ≥ 1)

=⇒ r 1
q
(x) = x

1
q
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r p
q
(x) = (r 1

q
(x))p = x

p
q

Thus rα(x) agrees with xα when a ∈ Q as previously defined. Now we give them names:

exp(x) = e(x) x ∈ R
log x = l(x) x ∈ (0,∞)

xα = rα(x) α ∈ R, x ∈ (0,∞)

e(x) = e(x log e) = ex(e) = ex

where

e =
def
==

∞∑
n=0

1

n!

exp(x) is also a power, which we may as well write as ex. Finally we compute

(xα)′ = (eα log x)′

= eα log xα

x
= αxα−1

f(x) = ax, a > 0 then

f ′(x) = (ex log a)′ = ex log a log a = ax log a

Start of
lecture 17 Remark. “Exponentials beat polynomials”

lim
x→∞

ex

xk
= ∞

(k > 0). This is easy to prove since

ex =
∞∑
j=0

xj

j!
>

xn

n!

for x > 0. Now pick n > k and then

ex

xk
>

xn−k

n!
→ ∞

as x → ∞.
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Trigonometric Functions

cos z = 1− z2

2!
+

z4

4!
− · · · =

∞∑
n=0

(−1)kz2k

(2k)!

sin z = z − z3

3!
+

z5

5!
− · · · =

∞∑
n=0

(−1)kz2k+1

(2k + 1)!

Both power series have infinite radius of convergence and by Theorem 4.4 we get

(sin z)′ = cos z, (cos z)′ = − sin z

(ez = e(z))

eiz =
∞∑
n=0

(iz)n

n!
=

∞∑
n=0

(iz)2k

(2k)!
+

∞∑
n=0

(iz)2k+1

(2k + 1)!

(iz)2k = (−1)kz2k, (iz)2k+1 = i(−1)kz2k+1

=⇒ eiz = cos z + i sin z

Similarly
e−iz = cos z − i sin z

which gives

cos z =
1

2
(eiz + e−iz)

sin z =
1

2i
(eiz − e−iz)

From this we get many trigonometric identities:

cos z = cos(−z), sin(−z) = − sin z

cos(0) = 1, sin(0) = 0

Addition formulas:

(1) sin(z + w) = sin z cosw + cos z + sinw

(2) cos(z + w) = cos z cosw − sin z sinw, z, w ∈ C.

These follow from ea+b = eaeb. To prove (2) write

cos(z + w) =
1

2
(ei(z+w) + e−i(z+w))

=
1

2
(eizeiw + eizeiw)

cos z cosw − sin z sinw =
1

4
(eiz + e−iz)(eiw + e−iw) +

1

4
(eiz − e−iz)(eiw − e−iw)

operate to get the result. Also we can easily deduce that sin2 z+cos2 z = 1 for all z ∈ C.
Now if x ∈ R, then sinx, cosx ∈ R and so | sinx|, | cosx| ≤ 1 for x ∈ R.
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Remark. They are not bounded over C. For example take

cos(iy) =
1

2
(e−y + ey)

(y ∈ R) then as y → ∞, cos(iy) → ∞!

Periodicity of the Trigonmetric Functions

Proposition 4.10. There is a smallest positive number ω (where
√
2 < ω

2 <
√
3)

such that
cos

ω

2
= 0

Proof. If 0 < x < 2 then

sinx =

(
x− x3

3!

)
︸ ︷︷ ︸

>0

+

(
x5

5!
− x7

7!

)
︸ ︷︷ ︸

>0

+ · · ·

(If 0 < x < 2 then x2n−1

(2n−1)! >
x2n+1

(2n+1)!) Hence sinx > 0. Since (cosx)′ = − sinx < 0 for

0 < x < 2, cosx is strictly decreasing. We’ll show that cos
√
2 > 0 and cos

√
3 < 0.

Then by the intermediate value theorem the existence of ω follows.

cos
√
2 =

(
(
√
2)4

4!
− (

√
2)6

6!

)
︸ ︷︷ ︸

>0

+(· · · )︸ ︷︷ ︸
>0

+(· · · )︸ ︷︷ ︸
>0

+ · · ·

So cos
√
2 > 0. Now note that

cos
√
3 = 1− x2

2!
+

x4

4!
−
(
x6

6!
− x8

8!

)
︸ ︷︷ ︸

>0

− · · ·

But

1− 3

2
+

9

4× 3× 2
= 1− 3

2
+

3

8
= −1

8
< 0

so cos
√
3 < 0.

Corollary 4.11. sin ω
2 = 1.

Proof. Use sin2 ω
2 + cos2 ω

2 = 1 and sin ω
2 > 0.

Now define π = ω.
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Theorem 4.12. (1) sin
(
z + π

2

)
= cos z, cos

(
z + π

2

)
= − sin z.

(2) sin(z + π) = − sin z, cos(z + π) = − cos z.

(3) sin(z + 2π) = sin z, cos(z + 2π) = cos z.

Proof. Immediate from addition formulas and cos π
2 = 0, sin π

2 = 1.

This implies

eiz+2πi = cos(z + 2π) + i sin(z + 2π)

= cos z + i sin z

eiz

so ez is periodic with period 2πi.
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Remark. “Relation with geometry”
Given two vectors x, y ∈ R2 define x · y as in vectors and matrices:

x · y = x1y2 + x2y2

x = (x1, x2) y = (y1, y2)

Cauchy-Schwarz:
|x · y| ≤ ∥x∥∥y∥

where ∥x∥2 = x21 + x22. So, for x ̸= 0, y ̸= 0

−1 ≤ x · y
∥x∥∥y∥

≤ 1

Define the angle between x and y as the unique θ ∈ [0, π] such that

cos θ =
x · y

∥x∥∥y∥

x = (h, v), cos θ = x · e1 = h

Start of
lecture 18 Hyperbolic Functions

(Hyperbolic sine and cosine)

Definition. cosh z = 1
2(e

z + e−z), sinh z = 1
2(e

z − e−z). Alternatively, cosh z =
cos(iz), sinh z = −i sin(iz).

One can also prove that (cosh z)′ = sinh z and (sinh z)′ = cosh z. (This is left as an
exercise). We also have

cosh2 z − sinh2 z = 1

The rest of the trigonometric functions (tan, cot, sec, cosec) are defined in the usual way.
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5 Integration

f : [a, b] → R bounded. (i.e. there exists K such that |f(x)| ≤ K ∀ x ∈ [a, b])

Definition. A dissection (or partition) D of [a, b] is a finite subset of [a, b] containing
the endpoints a and b. We write

D = {x0, x1, . . . , x4}

with a = x0 < x1 < · · · < xn−1 < x=b.

Definition. We define the upper sum and lower sum associated with D by

S(f,D) =
n∑

j=1

(xj − xj−1) sup
x∈[xj−1,xj ]

f(x) (upper)

s(f,D) =

n∑
j=1

(xj − xj−1) inf
x∈[xj−1,xj ]

f(x) (lower)

Clearly s(f,D) ≤ S(f,D) for all D.

Lemma 5.1. If D and D′ are dissections with D′ ⊇ D, then

S(f,D) ≥ S(f,D′) ≥ s(f,D′) ≥ s(f,D)

Proof.
S(f,D′) ≥ s(f,D′)

is obvious. Suppose D′ contains an extra point than D, let’s say y ∈ (xr−1, xr). Then
clearly

sup
x∈[xr−1,y]

f(x), sup
x∈[y,xr]

≤ sup
x∈[xr−1,xr]

f(x)

=⇒ (xr − xr−1) sup
x∈[xr−1,xr]

f(x) ≥ (y − xr−1) sup
x∈[xr−1,y]

f(x) + (xr − y) sup
x∈[y,xr]

f(x)

=⇒ S(f,D) ≥ S(f,D′)

The same for s and the same if D′ has more extra points than D.
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Lemma 5.2. D1,D2 two arbitrary dissections. Then

S(f,D1) ≥ S(f,D1 ∪ D2) ≥ s(f,D1 ∪ D2) ≥ s(f,D2)

and in particular
S(f,D1) ≥ s(f,D2)

Proof. Take D′ = D1 ∪ D2 ⊇ D1,D2 in the previous lemma.

Definition. The upper integral of f is

I∗(f) = inf
D

S(f,D)

(always exists!) The lower integral of f is

I∗(f) = sup
D

s(f,D)

By Lemma 5.2,
I∗(f) ≥ I∗(f)

because
S(f,D1) ≥ s(f,D2)

I∗(f) = inf
D1

S(f,D1) ≥ s(f,D2)

I∗(f) ≥ sup
D2

s(f,D2) = I∗(f)

Definition. A bounded function f : [a, b] → R is said to be Riemann integrable (or
just integrable) if

I∗(f) = I∗(f)

and we set ∫ b

a
f(x)dx = I∗(f) = I∗(f) =

∫ b

a
f
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Example.

f(x) =

{
1 x ∈ Q ∩ [0, 1]

0 x ̸∈ Q ∩ [0, 1]

f : [0, 1] → R; f is not Riemann integrable:

sup
x∈[xj−1,xj ]

f(x) = 1, inf
x∈[xj−1,xj ]

f(x) = 0

Hence s(f,D) = 1 and s(f,D) = 0 for all D. Hence I∗(f) = 1, but I∗(f) = 0.

Start of
lecture 19 Theorem 5.3. A bounded function f : [a, b] → R is Riemann integrable if and only

if given ε > 0, ∃D such that

S(f,D)− s(f,D) < ε

Proof. For every dissection D we have

0 ≤ I∗(f)− I∗(f) ≤ S(f,D)− s(f,D)

If the given condition holds, then

0 ≤ I∗(f)− I∗(f) ≤ S(f,D)− s(f,D) < ε

for all ε > 0 hence I∗(f) = I∗(f).
Conversely, if f is integrable, by definition of sup and inf there are partitions D1 and
D2 such that ∫ b

a
f − ε

2
= I∗(f) +

ε

2
=

∫ b

a
f +

ε

2

By Lemma 5.1 (D1 ∪ D2 ⊇ D1,D2)

S(f,D1 ∪ D2)− s(f,D1 ∪ D2) ≤ S(f,D2)− s(f,D1

<

∫ b

a
f +

ε

2
−
∫ b

a
f +

ε

2

= ε

We now use this criterion to show that monotone and continuous functions are integrable.

Remark. Monotone and continuous functions are bounded (theorem 2.6 for the
case of continuous functions).
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Theorem 5.4. Let f : [a, b] → R be monotone. Then f is integrable.

Proof. Suppose f is increasing (same proof for f decreasing). Then

sup
x∈[xj−1,xj ]

f(x) = f(xj)

inf
x∈[xj−1,xj ]

f(x) = f(xj−1)

Thus

S(f,D)− s(f,D) =

n∑
j−1

(xj − xj−1)[f(xj)− f(xj−1)]

Now choose

D =

{
a, a+

b− a

n
, a+

2(b− a)

n
, . . . , b

}
xj = a+

(b− a)j

n
0 ≤ j ≤ n

S(f,D)− s(f,D) =
(b− a)

n
(f(b)− f(a))

Take n large enough such that

(b− a)

n
(f(b)− f(a)) < ε

and use Theorem 5.3.

Continuous Functions

First we need an auxiliary lemma.

Lemma 5.5. f : [a, b] → R continuous. Then given ε > 0, ∃ δ > 0 such that if
|x− y| < δ =⇒ |f(x)− f(y)| < ε (uniform continuity). The point is that δ works
∀ x, y as long as |x− y| < δ. (in the definition of continuity of f at, δ = f(x)).

Proof. Suppose the claim is false. Then ∃ ε > 0 such that ∀ δ > 0, we can find x, y ∈ [a, b]
such that |x − y| < δ, but |f(x) − f(y)| ≥ ε. Take δ = 1

n , to get xn, yn ∈ [a, b] with
|xn − yn| < 1

n , but
|f(xn)− f(yn)| ≥ ε

By Bolzano-Weierstrass, ∃ xnk
→ c ∈ [a, b]

|ynk
− c| ≤ |ynk

− xnk
|+ |xnk

− c| → 0

so ynk
→ c. But

|f(xnk
− f(ynk

) ≥ ε.
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Let k → ∞, then by continuity of f

|f(c)− f(c)| ≥ ε =⇒ 0 ≥ ε

Absurd.

Theorem 5.6. Let f : [a, b] → R continuous. Then f is Riemann integral.

Proof. By 5.5, given ε > 0, ∃ δ > 0 such that |x− y| < δ =⇒ |f(x)− f(y)| < ε. Let

D =

{
a+

(b− a)j

n
: 0 ≤ j ≤ n

}
Choose n large enough such that b−a

n < δ. Then for x, y ∈ [xj−1, xj ]

|f(x)− f(y)| < ε,

since

|x− y| ≤ |xj − xj−1| =
b− a

n
< δ

Observe that
max

x∈[xj−1,xj ]
f(x)− min

x∈[xj−1,xj ]
f(x) = f(pj)− f(qj)

oj , qj ∈ [xj−1, xj ] (max and min are achieved due to continuity). Hence

S(f,D)− s(f,D) =
n∑

j=1

(xj − xj−1)[f(pj)− f(qj)]

< ε(b− a)

Start of
lecture 20 Remark. We have shown that monotone functions and continuous functions are

Riemann integrable, but there do exist more complicated functions that are Riemann
integrable.s
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Example. f : [0, 1] → R

f(x) =

{
1
q x = p

q ∈ (0, 1]in its lowest form

0 otherwise

Clearly s(f,D) = 0 ∀ D. We’ll show that given ε > 0, ∃D such that S(f,D) < ε.
This would imply that f is integrable with

∫ 1
0 f = 0. Consider the set{

x ∈ [0, 1] : f(x) ≥ 1

N

}
=

{
p

q
: 1 ≤ q ≤ N, 1 ≤ p ≤ q

}
Take N ∈ N such that 1

N < ε
2 . This is a finite set

0 < t1 < t2 < · · · < tR = 1

Consider a dissection D of [a, b] such that

(1) Each tk, 1 ≤ k < R is some (xj−1, xj)

(2) ∀ k, the unique interval containing tk has length at most ε
2R .

Note f ≤ 1 everywhere so

S(f,D) ≤ 1

N
+

ε

2
< ε

Elementary Properties of the Integral

Let f, g bounded and integrable on [a, b].

(1) If f ≤ g on [a, b] then ∫ b

a
f ≤

∫ b

a
g

(2) f + g is integrable on [a, b] and∫ b

a
f + g =

∫ b

a
f +

∫ b

a
g

(3) For any constant k, kf is integrable and∫ b

a
kf = k

∫ b

a
f

(4) |f | is integrable and

|
∫ b

a
f | ≤

∫ b

a
|f |
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(5) The product fg is integrable.

Proof.

(1) If f ≤ g, then ∫ b

a
f = I∗(f)

≤ S(f,D)

≤ S(g,D)

=⇒
∫ b

a
f = I∗(f)

≤ I∗(g)

=

∫ b

a
g

(2) sup
[xj−1,xj ]

(f + g) ≤ sup
[xj−1,xj ]

f + sup
[xj−1,xj ]

g

=⇒ S(f + g,D) ≤ S(f,D) + S(g,D)

Now take dissections D1 and D2

I∗(f + g) ≤ S(f + g,D1 ∪ D2)

≤ S(f,D1 ∪ D2) + S(g,D1 ∪ D2)

≤ S(f,D1) + S(g,D2)

Fix D1 and take inf over D2 to get

I∗(f + g) ≤ S(f,D1) + I∗(g)

now take inf over all D1 to get

I∗(f + g) ≤ I∗(f) + I∗(g) =

∫ b

a
f +

∫ b

a
g

Similarly ∫ b

a
f +

∫ b

a
g ≤ I∗(f + g)

so f + g is integrable with integral equal to the sum of integrals.

(3) Exercise!

(4) Consider
f+(x) = max(f(x), 0)

sup
[xj−1,xj ]

f+ − inf
[xj−1,xj ]

f+ ≤ sup
[xj−1,xj ]

f − inf
[xj−1,xj ]

f
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We know that given ε > 0 there exists D such that

S(f,D)− s(f,D) < ε

(criterion from last time)

S(f,D)− s(f,D) =
n∑

j=1

( sup
[xj−1,xj ]

f − inf
[xj−1,xj ]

f)(xj − xj−1)

=⇒ S(f+,D)− s(f+,D) ≤ S(f,D)− s(f,D) < ε

=⇒ f+ is integrable

But |f | = 2f+ − f , so by (2) and (3), |f | is integrable. Since

−|f | ≤ f ≤ |f |

property (1) gives

|
∫ b

a
f | ≤

∫ b

a
|f |

(5) Take f integrable and ≥ 0. Then

sup
[xj−1,xj ]

f2 =

(
sup

[xj−1,xj ]
f

)2

= M2
j

inf
[xj−1,xj ]

f2 =

(
inf

[xj−1,xj ]
f

)2

= m2
j

Thus

S(f2,D)− s(f2,D) =

n∑
j=1

(xj − xj−1)(M
2
J −m2

j )

=
n∑

j=1

(xj − xj−1)(Mj +mj)(Mj −mj) ≤ 2K(S(f,D)− s(f,D))

(|f(X)| ≤ K ∀ x ∈ [a, b]) Using the criterion in Theorem 5.3 we deduce that f2 is
integrable. Now take any f , then |f | ≤ 0. Since f2 = |f |2 we deduce that f2 is
integrable for any f . Finally for fg note that

4fg = (f + g)2 − (f − g)2

hence fg is integrable given what we proved before.

Start of
lecture 21 Here is another property of Riemann integrals:

55



(6) f is integrable on [a, b]. If a < c < b, then f is integrable over [a, c] and [c, b] and∫ b

a
f =

∫ c

a
f +

∫ b

c
f

Conversely, if f is integrable over [a, c] and [c, b], then f is integrable over [a, b] and∫ b

a
f =

∫ c

a
f +

∫ b

c
f

Proof of (6). We first make two observations:

• If D1 is a dissection of [a, c] and D2 is a dissection of [c, b], then D = D1 ∪ D2 is a
dissection of [a, b] and

S(f,D1 ∪ D2) = S(f[a,c],D1) + S(f[c,b],D2 (∗1)

• Also if D is a dissection of [a, b], then

S(f,D) ≥ S(f,D ∪ {c})
= S(f[a,c],D1) + S(f[c,b],D2) (∗2)

where D1 dissects [a, c] and D2 dissects [c, b].

Then (∗1) gives
I∗(f) ≤ I∗(f[a,c]) + I∗(f[c,b])

and (∗2) gives
I∗(f) ≥ I∗(f[a,c]) + I∗(f[c,b])

=⇒ I∗(f) = I∗(f[a,c]) + I∗(f[c,b])

Similarly
I∗(f) = I∗(f[a,c] + I∗(f[c,b])

Thus

0 ≤ I∗(F )− I∗(f)

= [I∗(f[a,c])− I∗(f[a,c])] + [I∗(f[c,b])− I∗(f[c,b])]

From this (6) follows right away.

Notation. It is a convention that if a > b, then∫ b

a
f = −

∫ a

b
f

and if a = b we agree that its value is zero. With this convention if |f | ≤ K, then∣∣∣∣∫ b

a
f

∣∣∣∣ ≤ K|b− a|
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Fundamental Theorem of Calculus (FTC)

f : [a, b] → R bounded and integrable. Write:

F (x) =

∫ x

a
f(t)dt

x ∈ [a, b].

Theorem 5.7. F is continuous.

Proof.

F (x+ h)− F (x) =

∫ x+h

x
f(t)dt

so

|F (x+ h)− F (x)| =
∣∣∣∣∫ x+h

x
f(t)dt

∣∣∣∣
≤ K|h|

if |f | ≤ K ∀ t ∈ [a, b]. Now let h → 0 and we’re done.

Theorem 5.8 (FTC). If in addition f is continuous at x, then F is differentiable
at x and

F ′(x) = f(x).

Proof. We need to consider ∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣
(for x+ h ∈ [a, b] and h ̸= 0).∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ = 1

|h|

∣∣∣∣∫ x+h

x
f(t)dt− hf(x)

∣∣∣∣
=

1

|h|

∣∣∣∣∫ x+h

x
[f(t)− f(x)]dt

∣∣∣∣
f is continuous at x, means that given ε > 0, ∃ δ > 0 such that if |t− x| < δ then

|f(t)− f(x)| < ε

If |h| < δ, we can write

≤ 1

|h|
ε|h| = ε

This means

lim
h→0

F (x+ h)− F (x)

h
= f(x)
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Example.

f(x) =

{
−1 x ∈ [−1, 0]

1 x ∈ (0, 1]

Since monotone, it’s integrable. One can check that

F (x) =

{
−x− 1 x ≤ 0

x− 1 x > 0
= −1 + |x|
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Corollary 5.9 (integration is the inverse of differentiation). If f = g′ is continuous
on [a, b], then ∫ x

a
f(t)dt = g(x)− g(a) ∀ x ∈ [a, b]

Proof. From Theorem 5.8 F − g has zero derivative in [a, b]. Hence F − g is constant
and since F (a) = 0 this implies that F (x) = g(x)− g(a).

Every continuous has an indefinite integral or anti-derivative written
∫
f(x)dx which is

determined up to a constant.

Remark. We have solved the ODE:{
y′(x) = f(x)

y(a) = y0

Start of
lecture 22 Corollary 5.10 (integration by parts). Suppose f ′ and g′ exist and are continuous

on [a, b]. Then ∫ b

a
f ′g = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′

Proof. By the product rule
(fg)′ = f ′g + fg′

By 5.9

f(b)g(b)− f(a)g(a) =

∫ b

a
f ′g +

∫ b

a
fg′

Corollary 5.11 (integration by substitution). Let g : [α, β] → [a, b] with g(α) = a,
g(β) = b and g′ exists and is continuous on [α, β]. Let f : [a, b] → R be continuous.
Then ∫ b

a
f(x)dx =

∫ β

α
f(g(t))g′(t)dt

Proof. Set F (x) =
∫ x
a f(t)dt as before. Let h(t) = F (g(t)) (defined since g takes values
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in [a, b]). Then∫ β

α
f(g(t))g′(t)dt =

∫ β

α
F ′(g(t))g′(t)dt (FTC)

=

∫ β

α
h′(t)dt (Chain rule)

= h(β)− h(α)

= F (b)− F (a)

=

∫ b

a
f(x)dx

Theorem 5.12 (Taylor’s Theorem with remainder an integral). Let f (n)(x) be
continuous for x ∈ [0, h]. Then

f(h) = f(0) + · · ·+ hn−1f (n−1)(0)

(n− 1)!
+Rn

where

Rn =
hn

(n− 1)!

∫ 1

0
(1− t)n−1f (n)(th)dt

Proof. Substitution u = th.

Rn =
1

(n− 1)!

∫ h

0
(h− u)n−1f (n)(u)du

Integrating by parts now, we get:

Rn = −hn−1f (n−1)(0)

(n− 1)!
+

1

(n− 2)!

∫ h

0
(h− u)n−2f (n−1)(u)du︸ ︷︷ ︸

Rn−1

If we integrate by parts n− 1 times we arrive at:

Rn = −hn−1f (n−1)(0)

(n− 1)!
− · · · − hf ′(0) +

∫ h

0
f ′(u)du︸ ︷︷ ︸

f(h)−f(0)

Now we can get the Cauchy & Lagrange form of the remainder. However note that the
proof above uses continuity of f (n) not just mere existence as in section 3. But first we
need to prove:
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Theorem 5.13. f, g : [a, b] → R continuous with g(x) ̸= 0 ∀ x ∈ (a, b). Then
∃ c ∈ (a, b) such that ∫ b

a
f(x)g(x)dx = f(c)

∫ b

a
g(x)dx

Note. If we take g(x) = 1 we get∫ b

a
f(x)dx = f(c)(b− a)

Proof. We’re going to use Cauchy’s MVT (Theorem 3.7).

F (x) =

∫ x

a
fg, G(x) =

∫ x

a
g

Theorem 3.7 implies ∃ c ∈ (a, b) such that

(F (b)− F (a))G′(c) = F ′(c)(G(b)−G(a))(∫ b

a
fg

)
g(c) = f(c)g(c)

∫ b

a
g

Since g(c) ̸= 0 we simplify and we’re done.

Now we want to apply this to

Rn =
hn

(n− 1)!

∫ 1

0
(1− t)n−1f (n)(th)dt

First we use Theorem 5.13 with g ≡ 1, to get

Rn
hn

(n− 1)!
(1− θ)n−1f (n)(θh)
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(θ ∈ (0, 1)), which is Cauchy’s form of remainder!

To get Lagrange, we use Theorem 5.13 with g(t) = (1− t)n−1 which is > 0 for t ∈ (0, 1).
Therefore ∃ θ ∈ (0, 1) such that

Rn =
hn

(n− 1)!
f (n)(θh)

[∫ 1

0
(1− t)n−1dt

]
and ∫ 1

0
(1− t)n−1dt = −(1− t)n

n

∣∣∣∣1
0

=
1

n

=⇒ Rn =
hn

n!
f (n)(θh), θ ∈ (0, 1)

which is Lagrange’s form of the remainder!
Start of
lecture 23 5.1 Improper Integrals (infinite integrals)

Definition. Suppose f : [a,∞) → R integrable (and bounded) on every interval
[a,R] and that as R → ∞ ∫ R

a
f(x)dx → l

Then we say that
∫∞
a f(x)dx exists or converges and that its value is l. If

∫ R
a f(x)dx

does not tend to a limit, we say that
∫∞
a f(x)dx diverges. A similar definition applies

to
∫ a
−∞ f(x)dx. If ∫ ∞

a
f = l1 and

∫ a

−∞
f = l2

we write ∫ ∞

−∞
f = l1 + l2

(independent of the particular value of a).

Note. This last bit is not the same as saying that

lim
R→∞

∫ R

−R
f(x)dx

exists. It is stronger: for example ∫ R

−R
xdx = 0
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Example.
∫∞
1

dx
xk converges if and only if k > 1. Indeed, if k ̸= 1 then

∫ R

1

dx

xk
=

x1−k

1− k

∣∣∣∣R
1

=
R1−k − 1

1− k

and as R → ∞ this limit is finite if and only if k > 1. If k = 1,∫ R

1

dx

x
= logR → ∞

Remarks

(1) 1√
x
continuous on [δ, 1] for any δ > 0, and∫ 1

δ

1√
x
dx = 2

√
x
∣∣1
δ
= 2− 2

√
δ → 2

as δ → 0.

1√
x
is unbounded on (0, 1]. ∫ 1

0

dx√
x
= lim

δ→0

∫ 1

δ

dx√
x
= 2
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Exercise: give a general definition for cases like this.∫ 1

0

dx

x
= lim

δ→0

∫ 1

δ

dx

x

= lim
δ→0

(
log x|1δ

)
= lim

δ→0
(log 1− log δ)

does not exist.

(2) If f ≥ 0 and g ≥ 0, for x ≥ a and

f(x) ≤ Kg(x) ∀ x ≥ a

with K a constant, then∫ ∞

a
g converges =⇒

∫ ∞

a
f converges

and ∫ ∞

a
f ≤ K

∫ ∞

a
g

Just note that ∫ R

a
f ≤ K

∫ R

a
g

The function R →
∫ R
a f is increasing (f ≥ 0) and bounded above (since

∫∞
a g

converges). Take l = supR≥a

∫ R
a f < ∞, and check that

lim
R→∞

∫ R

a
f = l.

Given ε > 0, ∃ R0 such that ∫ R0

a
f ≥ l − ε

Thus if R ≥ R0, ∫ R

a
f ≥

∫ R0

a
≥ l − ε

=⇒ 0 ≤ l −
∫ R

a
f ≤ ε
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Example.
∫∞
0 e−

x2

2 dx. Note e−
x2

2 ≤ e−
x
2 for x ≥ 1. Note that∫ R

1
e−

x
2 dx =

1

2
[e−

1
2 − e−

R
2 ] → e−

1
2

2

hence
∫∞
0 e−

x2

2 converges.

(3) We know that if
∑

an converges, then an → 0.
∫∞
a f converges may not imply that

f → 0.

Example.

Area(△) =
2

(n+ 1)2

so since
∑ 2

(n+1)2
converges,

∫∞
0 f converges. But f(n) = 1, so f ̸→ 0.

5.2 The Integral Test

Theorem 5.14 (integral test). Let f(x) be a positive decreasing function for x ≥ 1.
Then

(1) The integral
∫∞
1 f(x)dx and the series

∑∞
1 f(n) both converge or diverge.

(2) As n → ∞,
n∑

r=1

f(r)−
∫ n

1
f(X)dx

tends to a limit l such that 0 ≤ l ≤ f(1).
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Note. f decreasing =⇒ f integrable on every bounded subinterval by Theorem
5.4.

Proof. If n− 1 ≤ x ≤ n, then

f(n− 1) ≥ f(x) ≥ f(n)

hence

f(n− 1) ≥
∫ n

n−1
f(x)dx ≥ f(n) (∗)

Adding
n−1∑
1

f(r) ≥
∫ n

1
f(x)dx ≥

n∑
2

f(r) (∗∗)

From this claim (1) is clear. For the proof of (2) set

ϕ(n) =

n∑
1

f(r)−
∫ n

1
f(x)dx

Then

ϕ(n)− ϕ(n− 1) = f(n)−
∫ n

n−1
f(x)dx ≤ 0

(using (∗)) From (∗∗)
0 ≤ ϕ(n) ≤ f(1)

Thus ϕ(n) is decreasing and tends to a limit l such that

0 ≤ l ≤ f(1).

Start of
lecture 24
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Examples

(1)
∑∞

1
1
nk converges if and only if k > 1 (∗). We saw that

∫∞
1

1
xk converges if and only

if k > 1, so from the integral test we get (∗).

(2)
∑∞

2
1

n logn , f(x) =
1

x log x , x ≥ 2.∫ R

2

dx

x log x
= log(log x)|R2 = log(logR)− log(log 2) → ∞

as R → ∞. Integral test implies

∞∑
2

1

n log n

diverges.

Corollary 5.15 (Euler’s constant). As n → ∞, 1 + 1
2 + · · · + 1

n − log n → γ
with 0 ≤ γ ≤ 1.

Proof. Set f(x) = 1
x and use Theorem 5.14.

Note. An open problem asks “Is γ irrational? (γ ≈ 0.577)”

We have seen: monotone functions and continuous functions are Riemann integrable.
We can generalize this a bit and say that piece-wise continuous functions are integrable.
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Definition. A function f : [a, b] → R is said to be piece-wise continuous if there is
a dissection

D = {a = x0, x1, . . . , xn = b}

such that

(1) f is continuous on (xj−1, xj) ∀ j

(2) The one-sided limits
lim

x→x+
j−1

f(x), lim
x→x−

j−1

f(x)

exist.

It is now an exercise to check that f is Riemann integrable: just check that f |[xj−1,xj ] is
integrable for each j. (the values of f and the endpoints won’t really matter) and use
additivity of domain (property (6)).

Question: How large can the discontinuity set of f be while f is still Riemann integrable?

Recall the example:

f(x) =

{
1
q x = p

q

0 otherwise

on [0, 1].

Note. What follows is non-examinable.

Answer: Henri Lebesgue characterization of Riemann integrability: f : [a, b] → R
bounded. Then f is Riemann integrable if and only if the set of discontinuity points has
measure zero.

Definition. Let l(I) be the length of an interval I. A subset A ⊂ R is said to have
measure zero if for each ε > 0, ∃ a countable collection of intervals Ij such that

A ⊂
∞⋃
j=1

Ij

and ∑
j

l(Ij) < ε
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Lemma. (1) Every countable set has measure zero.

(2) If B has measure zero and A ⊂ B, then A has measure zero.

(3) If Ak has measure zero ∀ k ∈ N, then
⋃

k∈NAk also has measure zero.

Oscillation of f

I interval:
ωf (I) = sup

I
f − inf

I
f

oscillation of f at a point:

ωf (x) = lim
ε→0

ωf (x− ε, x+ ε)

Lemma. f is continuous at x if and only if ωf (x) = 0.

Proof. Exercise.

Brief Sketch of Lebesgue’s criteria

D = {x ∈ [a, b] : f discontinuous at x} = {x : ωf (x) > 0}

N(α) = {x : ωf (x) ≥ α}

D =
∞⋃
1

N

(
1

k

)
Required to prove: D has measure zero. Let ε > 0 be given, ∃ D such that

n∑
j=1

ωf ([xj−1, xj ])(xj − xj−1)S(f,D)− s(f,D) <
εα

2

F = {j : (xj−1, xj) ∩N(α) ̸= ∅}

then for each j ∈ F ,
ωf ([xj−1, xj ]) ≥ α

=⇒ α
∑
j∈F

(xj − xj−1) ≤
∑
j∈F

ωf ([xj−1, xj ])(xj − xj−1) <
εα

2

=⇒
∑
j∈F

(xj − xj−1) <
ε

2

These cover N(α) except perhaps for {x0, x1, . . . , xn}. But these can be covered by
intervals of total length < ε

2 hence N(α) can be covered by total length < ε.
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For the other direction, let ε > 0 be given. N(ε) ⊂ D, so N(ε) has measure zero. N(ε)
is closed and bounded hence it can be covered by finitely many open intervals of total
length < ε.

N(ε) =

m⋃
i=1

Ui

K = [a, b] \
m⋃
i=1

Ui

compact so it can be covered by finitely many intervals Jj such that

ωf (Jj) < ε.
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