Analysis I

April 25, 2022

Contents

1	Limits and Convergence [b]		
2	Continuity [3] 2.1 The Intermediate Value Theorem 2.2 Inverse Functions	14 17 19	
3	Differentiability [5]	21	
4	Power Series [4-5] 4.1 The Standard Functions	35 39	
5	Integration5.1Improper Integrals (infinite integrals)5.2The Integral Test	48 62 65	

Start of lecture 1

1 Limits and Convergence [b]

Review from Numbers and Sets: sequences a_n , $(a_n)_{n=1}^{\infty}$, $a_n \in \mathbb{R}$.

Definition. We say that $a_n \to a$ as $n \to \infty$ if given $\varepsilon > 0, \exists N$ such that $|a_n - a| < \varepsilon$ for all $n \ge N$. Note $N = N(\varepsilon)$.

Definition (Monotonic sequence). A sequence is *increasing* if $a_n \leq a_{n+1}$ for all n. Similarly, a sequence is *decreasing* if $a_n \geq a_{n+1}$ for all n. The sequence is *strictly increasing* / *decreasing* if equality never occurs. A sequence is *monotonic* if it is either increasing or decreasing.

Axiom (Fundamental Axiom of the Real Numbers). Given an increasing sequence $(a_n)_{n=1}^{\infty}$ and some $A \in \mathbb{R}$ such that $a_n \leq A$ for all n, there exists $a \in \mathbb{R}$ such that $a_n \to a$ as $n \to \infty$. So an increasing sequence of real numbers bounded above *converges*. Equivalently a decreasing sequence of real numbers bounded below converges. Equivalent also to: "Every non-empty of real numbers bounded above has a *supremum*". (LUBA = Least Upper Bound Axiom).

Definition (supremum). Given $S \subset \mathbb{R}$, $S \neq \emptyset$ we say that $\sup S = K$ if

- (i) $x \leq K \ \forall \ x \in S$
- (ii) given $\epsilon > 0$, $\exists x \in S$ such that $x > K \varepsilon$.

Note. Supremum is unique. We also can define a similar notion of infimum.

Lemma 1.1. (i) The limit is unique. That is, if $a_n \to a$ and $a_n \to b$, then a = b.

- (ii) If $a_n \to a$ as $n \to \infty$ and $n_1 < n_2 < n_3 < \cdots$, then $a_{n_j} \to a$ as $j \to \infty$ (subsequences converge to the same limit).
- (iii) If $a_n = c \forall n$, then $a_n \to c$ as $n \to \infty$.
- (iv) If $a_n \to a$ and $b_n \to b$, then $a_n + b_n \to a + b$.
- (v) If $a_n \to a$ and $b_n \to b$, then $a_n b_n \to ab$.
- (vi) If $a_n \to a$, $a_n \neq 0 \ \forall n$ and $a \neq 0$, then $\frac{1}{a_n} \to \frac{1}{a}$.
- (vii) If $a_n \leq A \ \forall n \text{ and } a_n \rightarrow a$, then $a \leq A$.

Proof. We only do (i), (ii) and (v) and leave the others as exercise.

(i) given $\varepsilon > 0$, $\exists n_1$ such that $|a_n - a| < \varepsilon \forall n \ge n_1$, and $\exists n_2$ such that $|a_n - b| < \varepsilon \forall n \ge n_2$. Then let $N = \max\{n_1, n_2\}$. Then if $n \ge N$,

 $|a-b| \le |a_n-a| + |a_n-b| < 2\varepsilon.$

If $a \neq b$, take $\varepsilon = \frac{|a-b|}{3}$, then by triangle inequality

$$|a-b| < \frac{2}{3}|a-b|$$

which is a contradiction if $a \neq b$, hence a = b.

- (ii) given $\varepsilon > 0$, $\exists N$ such that $|a_n a| < \varepsilon$, $\forall n \ge N$ since $n_j \ge j$ by induction, we have $|a_{n_j} a| < \varepsilon \ \forall \ j \ge N$, i.e. $a_{n_j} \to a$ as $j \to \infty$.
- (v) $|a_nb_n ab| \leq |a_nb_n a_nb| + |a_nb ab| = |a_n||b_n b| + |b||a_n a|$. Since $a_n \to a$, given $\varepsilon > 0$, $\exists n_1$ such that $|a_n - a| < \varepsilon \ \forall n \geq n_1$, and similarly since $b_n \to b \ \exists n_2$ such that $|b_n - b| < \varepsilon \ \forall n \geq n_2$. If $n \geq n_1(1)$, $|a_n - a| < 1$, so $|a_n| \leq |a| + 1$. Hence

$$|a_n b_n - ab| \le \epsilon(|a| + 1 + |b|)$$

for all $n \ge n_3(\epsilon) = \max\{n_1(1), n_1(\epsilon), n_2(\epsilon)\}.$

Lemma 1.2. $\frac{1}{n} \to 0$ as $n \to \infty$.

Proof. $\frac{1}{n}$ is a decreasing sequence bounded by below, so by the Fundamental Axiom it has a limit a. We claim that a = 0. Note that

$$\frac{1}{2n} = \frac{1}{2} \times \frac{1}{n} \to \frac{a}{2}$$

by Lemma 1.1(v). But $\frac{1}{2}$ is a subsequence, so by Lemma 1.1(ii), $\frac{1}{2n} \to a$. By uniqueness of limits (Lemma 1.1(i)), we have $a = \frac{a}{2} \implies a = 0$.

Remark. The definition of limit of a sequence makes perfect sense for $a_n \in \mathbb{C}$.

Definition. $a_n \to a$ if given $\varepsilon > 0$, $\exists N$ such that $\forall n \ge N$, $|a_n - a| < \varepsilon$.

The first six parts of Lemma 1.1 are the same over \mathbb{C} . The last one does not make sense (over \mathbb{C}) since it uses the *order* of \mathbb{R} .

Start of lecture 2

The Bolzano-Weierstrass Theorem

Theorem 1.3. If $x_n \in \mathbb{R}$ and there exists K such that $|x_n| \leq K \forall n$, then we can find $n_1 < n_2 < n_3 < \cdots$ and $x \in \mathbb{R}$ such that $x_{n_j} \to x$ as $j \to \infty$.

In other words every *bounded* sequence has a convergent subsequence.

Remark. We say nothing about uniqueness of x, for example $x_n = (-1)^n$, then $x_{2n+1} \to -1$ and $x_{2n} \to 1$.

Proof. Set $[a_1, b_1] = [-K, K]$. Let $c_n = \frac{a_n + b_n}{2}$ for all n. Consider the following possibilities:

- (1) $x \in [a_1, c_1]$ for infinitely many values of n.
- (2) $x_n \in [c_1, b_1]$ for infinitely many values of n.

(1) and (2) could hold at the same time. But if (1) holds, we set $a_2 = a_1$ and $b_2 = c_1$. If (1) fails, we have that (2) must hold and we set $a_2 = c_1$ and $b_2 = b_1$. Proceed inductively to construct sequences a_n, b_n such that $x_m \in [a_n, b_n]$ for infinitely many values of m.

$$a_{n-1} \le a_n \le b_n \le b_{n-1}$$

 $b_n - a_n = \frac{b_{n-1} - a_{n-1}}{2}$ (*)

(bisection method). Note that a_n is an increasing sequence and bounded, and b_n is a decreasing sequence and bounded, so by the Fundamental Axiom, $a_n \to a \in [a_1, b_1]$ and $b_n \to b \in [a_1, b_1]$. Using (*),

$$b-a = \frac{b-a}{2} \implies a = b.$$

Since $x_m \in [a_n, b_n]$ for infinitely many values of m, having chosen n_j such that $x_{n_j} \in [a_j, b_j]$, there is $n_{j+1} > n_j$ such that $x_{n_{j+1}} \in [a_{j+1}, b_{j+1}]$ (I have an "unlimited supply"!) Since $a_j \leq x_{n_j} \leq b_j$, we have $x_{n_j} \to a$.

Cauchy Sequences

Definition (Cauchy Sequence). $a_n \in \mathbb{R}$ is called a *Cauchy sequence* if given $\varepsilon > 0$, $\exists N > 0$ such that $|a_n - a_m| < \varepsilon \forall n, m \le N$. (Note: $N = N(\varepsilon)$.)

Lemma 1.4. A convergent sequence is a Cauchy sequence.

Proof. If $a_n \to a$, given $\varepsilon > 0$, $\exists N$ such that $\forall n \ge N$, $|a_n - a| < \varepsilon$. Take $m, n \ge N$, then

$$|a_n - a_m| \le |a_n - a| + |a_m - a| < 2\varepsilon.$$

Theorem 1.5. Every Cauchy sequence is convergent.

Proof. First we note that if a_n is Cauchy, then it is *bounded*. Take $\varepsilon = 1$, N = N(1) in the Cauchy property, then

$$|a_n - a_m| < 1, \quad \forall \ n, m \ge N(1)$$
$$|a_m| \le |a_m - a_N| + |a_N| < 1 + |a_N| \quad \forall \ m \ge N.$$

Let $K = \max\{1 + |a_N|, |a_n|, n = 1, 2, ..., N - 1\}$. Then $|a_n| \leq K \forall n$. So by the Bolzano-Weierstrass theorem, $a_{n_i \to a}$.

Claim: $a_n \to a$. We now prove the claim: given $\varepsilon > 0, \exists j_0$ such that $\forall j \ge j_0$

 $|a_{n_i} - a| < \varepsilon.$

Also, $\exists N(\varepsilon)$ such that $|a_m - a_n| < \varepsilon \forall m, n \ge N(\varepsilon)$. Take j such that $n_j \ge \max\{N(\varepsilon), n_{j_0}\}$. Then if $n \ge N(\varepsilon)$

$$|a_n - a| \leq \underbrace{|a_n - a_{n_j}|}_{<\varepsilon} + \underbrace{|a_{n_j} - a|}_{<\varepsilon} < 2\varepsilon.$$

Summary: in \mathbb{R} a sequence is convergent is and only if it is Cauchy. "old fashioned name": the "general principle of convergence". Useful property: since we do not need to know what the limit is.

Series

Definition. $a_n \in \mathbb{R}, \mathbb{C}$. We say that $\sum_{j=1}^{\infty} a_j$ converges to S if the sequence of partial sums

$$S_N = \sum_{j=1}^N a_j \to S$$

as $N \to \infty$. We write

$$\sum_{j=1}^{\infty} a_j = S.$$

If S_N does not converge, we say that $\sum_{j=1}^{\infty} a_j$ diverges.

Remark. Nay problem in series is really a problem about the sequence of partial sums.

Lemma 1.6. (i) If $\sum_{j=1}^{\infty} a_j$ and $\sum_{j=1}^{\infty} b_j$ converge, then so does $\sum_{j=1}^{\infty} (\lambda a_j + \mu b_j)$ where $\lambda, \mu \in \mathbb{C}$.

(ii) Suppose $\exists N$ such that $a_j = b_j \forall j \ge N$ then either $\sum_{j=1}^{\infty} a_j$ and $\sum_{j=1}^{\infty} b_j$ both converge or they both diverge (initial terms do not matter).

Proof.

- (i) Exercise
- (ii) For $n \ge N$,

$$s_{n} = \sum_{j=1}^{n} a_{j} = \sum_{j=1}^{N-1} a_{j} + \sum_{j=N}^{n} a_{j}$$
$$d_{n} = \sum_{j=1}^{n} b_{j} = \sum_{j=1}^{N-1} b_{j} + \sum_{j=N}^{n} b_{j}$$
$$\implies s_{n} - d_{n} = \sum_{j=1}^{N-1} a_{j} - \sum_{j=1}^{N-1} b_{j} = \text{constant}$$

So s_n converges if and only if d_n does.

Start of lecture 3

 $\mathbf{6}$

Example (Geometric Series). $x \in \mathbb{R}$, set $a_n = x^{n-1}$ for $n \ge 1$. Now

$$s_n = \sum_{j=1}^n a_j = 1 + x + x^2 + \dots + x^{n-1}$$

Then

$$s_n = \begin{cases} \frac{1-x^n}{1-x} & \text{for } x \neq 1\\ n & \text{for } x = 1 \end{cases}$$
$$xs_n = x + x^2 + \dots + x^n = s_n - 1 + x^n$$
$$s_n(1-x) = 1 - x^n$$

if |x| < 1, $x^n \to 0$ and $s_n \to \frac{1}{1-x}$. If x > 1, $x^n \to \infty$ and $s_n \to \infty$. (Note $s_n \to \infty$ if given A, there exists N such that $s_n > A$ such that $s_n > A \forall n \ge N$, and $s_n \to -\infty$ if given A there exists N such that $s_n < -A$ for all $n \ge N$.) If x < -1 then s_n does not converge (oscillates). If x = -1 then

$$s_n = \begin{cases} 1 & n \text{ odd} \\ 0 & n \text{ even} \end{cases}$$

Thus the geometric series converges if and only if |x| < 1.

To see for example that $x^n \to 0$ if |x| < 1, consider first the case 0 < x < 1. Write $\frac{1}{x} = 1 + \delta, \ \delta > 0$. So

$$x^n = \frac{1}{(1+\delta)^n} \le \frac{1}{1+\delta n} \to 0.$$

because $(1 + \delta)^n \ge 1 + n\delta$ from binomial expansion. An easy observation from this is that:

Lemma 1.7. If $\sum_{j=1}^{\infty} a_n$ converges, then $\lim_{j\to\infty} a_j = 0$.

Proof.

$$s_n = \sum_{j=1}^n a_j$$

Then

$$a_n = s_n - s_{n-1}.$$

If $s_n \to a$, then $a_n \to 0$ (since $s_{n-1} \to a$ as well).

Remark. The converse of lemma 1.7 is false! For example, $\sum_{j=1}^{\infty} \frac{1}{j}$ diverges (harmonic series).

$$s_n = \sum_{j=1}^n \frac{1}{j}$$
$$s_{2n} = s_n + \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} > s_n + \frac{1}{2}$$

since $\frac{1}{n+k} \geq \frac{1}{2n}$ for k = 1, 2, ..., n. So if $s_n \to a$, then $s_{2n} \to a$ also, and thus $a \geq a + \frac{1}{2} \bigotimes$

Series of Non-negative Terms

 $a_n \ge 0$. Basic result:

Theorem 1.8 (The comparison test). Suppose that $0 \le b_n \le a_n \forall n$. Then if $\sum_{j=1}^{\infty} a_j$ converges, then so does $\sum_{j=1}^{\infty} b_j$.

Proof. Let $s_n = \sum_{j=1}^N a_j$ and let $d_N = \sum_{j=1}^N b_j$. Since $b_n \leq a_n$ we have that $d_N \leq s_N$. But $s_N \to s$, so $d_N \leq s_N \leq s \forall N$. Also, d_N is an increasing sequence bounded above, hence d_N converges.

Example.

$$\underbrace{\frac{1}{n^2} < \frac{1}{n(n-1)}}_{n \ge 2} = \frac{1}{n-1} - \frac{1}{n} = a_n$$

So

$$\sum_{j=2}^{N} a_{n} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots + \frac{1}{N-1} - \frac{1}{N} = 1 - \frac{1}{N} \to 1$$

So by comparison, $\sum_{j=1}^{N} \frac{1}{n^2}$ converges. In fact we get that

$$\sum_{j=1}^{\infty} \frac{1}{n^2} \le 1 + 1 = 2.$$

Theorem 1.9 (Root test / Cauchy's test for convergence). Assume $a_n \ge 0$ and $a_n^{1/n} \to a$ as $n \to \infty$. Then if a < 1, $\sum a_n$ converges; if a > 1, $\sum a_n$ diverges.

Remark. Nothing can be said if a = 1 (examples coming up).

Proof. If a < 1, choose a < r < 1. By definition of limit and hypothesis, there exists N such that for all $n \ge N$,

$$a_n^{1/n} < r \implies a_n < r^n$$

But since r < 1, the geometric series $\sum r^n$ converges, so by theorem 1.8, $\sum a_n$ converges. If a > 1, then for $n \ge N$, then $a_n^{1/n} > 1 \implies a_n > 1$, thus $\sum a_n$ diverges (since a_n does *not* tend to zero).

Theorem 1.10 (Ratio test / D'Alembert's test). Suppose $a_n > 0$ and $\frac{a_{n+1}}{a_n} \to \ell$. If $\ell < 1, \sum a_n$ converges. If $\ell > 1, \sum a_n$ converges.

Note. As before, nothing can be said for $\ell = 1$.

Proof. Suppose $\ell < 1$ and choose r with $\ell < r < 1$. Then there exists N such that for all $n \geq N$,

$$\frac{a_{n+1}}{a_n} < r$$

Therefore

$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+1}}{a_N} a_N < a_N r^{n-N}$$
$$\implies a_n < Kr^n$$

with K independent of n. Since $\sum r^n$ converges, so does $\sum a_n$ by theorem 1.8. If $\ell > 1$, choose $1 < r < \ell$, then $\frac{a_{n+1}}{a_n} > r$ for all $n \ge N$, and as before

$$a_n = \frac{a_n}{a_{n-1}} \frac{a_{n-1}}{a_{n-2}} \cdots \frac{a_{N+1}}{a_N} a_N > a_N r^{n-N} > a_N$$

so $\sum a_n$ diverges.

lecture 4 Examples

Start of

• $\sum_{j=1}^{\infty} \frac{j}{2^j}$. Then

$$\frac{a_{n+1}}{a_n} = \frac{n+1}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{n+1}{2n} \to \frac{1}{2} < 1.$$

So we have convergence by ratio test.

• $\sum_{j=1}^{\infty} \frac{1}{n}$ diverges, and $\sum_{j=1}^{\infty} \frac{1}{n^2}$ converges. Note ratio test gives limit 1 in both cases, so *inconclusive* if limit is 1. Since $n^{1/n} \to 1$ as $n \to \infty$, the root test is also inconclusive when limit is 1. To see this limit, write

$$n^{1/n} = 1 + \delta_n, \qquad \delta_n > 0.$$

 $n = (1 + \delta_n)^n > \frac{n(n-1)}{2} \delta_n^2$

(binomial expansion)

$$\implies \delta_n^2 < \frac{2}{n-1} \implies \delta_n \to 0$$

• $\sum_{j=1}^{\infty} \left[\frac{n+1}{3n+5}\right]^n$ converges by root test since

$$\frac{n+1}{3n+5} \to \frac{1}{3} < 1.$$

Another useful test:

Theorem 1.11 (Cauchy's Condensation Test). Let a_n be a decreasing sequence of positive terms. Then $\sum_{j=1}^{\infty} a_n$ converges if and only if

$$\sum_{j=1}^{\infty} 2^n a_{2^n}$$

converges.

Proof. First we observe that if a_n is decreasing, then

$$a_{2^k} \le a - 2^{k-1} + i \le a_{2^{k-1}}, \qquad 1 \le i \le 2^{k-1}$$

(for any $k \ge 1$.) Assume now that $\sum_{j=1}^{\infty} a_j$ converges with sum A. Then

$$2^{n-1}a_{2^n} \le a_{2^{n-1}+1} + a_{2^{n-1}+2} + \dots + a_{2^n} = \sum_{m=2^{n-1}}^{2^n} a_m.$$

Thus

$$\sum_{n=1}^{N} 2^{n-1} a_{2^n} \le \sum_{n=1}^{N} \sum_{m=2^{n-1}+1}^{2^n} a_m = \sum_{m=2}^{2^N} a_m.$$
$$\implies \sum_{n=1}^{N} 2^n a_{2^n} \le 2 \sum_{m=2}^{2^N} a_m \le 2(A-a_1)$$

Thus $\sum_{n=1}^{N} 2^n a_{2^n}$ being increasing and bounded above, *converges*. Conversely, assume that $\sum_{j=1}^{\infty} 2^j a_{2^j}$ converges. Then

$$\sum_{m=2^{n-1}+1}^{2^n} a_m \le \sum_{m=2^{n-1}+1}^{2^n} a_{2^{n-1}} = 2^{n-1} a_{2^{n-1}}.$$
$$\implies \sum_{m=2}^{2^N} a_m = \sum_{n=1}^N \sum_{m=2^{n-1}+1}^{2^n} a_m \le \sum_{n=1}^N 2^{n-1} a_{2^{n-1}} \le B.$$

So $\sum_{m=1}^{N} a_m$ is a bounded increasing sequence and thus it converges.

Examples / Applications

Claim. $\sum_{j=1}^{\infty} \frac{1}{n^k}$ converges if and only if k > 1.

Proof. Note that it is a decreasing sequence of positive terms.

$$\frac{1}{(n+1)^k} < \frac{1}{n^k}, \qquad \left(\frac{n}{n+1}\right)^k < 1$$

Now:

$$2^{n}a_{2^{n}} = 2^{n} \left[\frac{1}{2^{n}}\right]^{k} = 2^{n-nk} = (2^{1-k})^{n}$$

so it is a geometric series with ratio 2^{1-k} , and it converges if and only if $2^{1-k} < 1$, so if and only if k > 1.

Alternating Series

Theorem 1.12 (Alternating Series Test). If a_n decreases and tends to zero as $n \to \infty$, then the series $\sum_{j=1}^{\infty} (-1)^{n+1} a_n$ converges.

Example. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.

Proof. Let $s_n = a_1 - a_2 + \dots + (-1)^{n+1} a_n$. Note

$$s_{2n} = (a_1 - a_2) + (a_3 - a_4) + \dots + \underbrace{(a_{2n-1} - a_{2n})}_{\ge 0} \ge s_{2n-2}$$
$$s_{2n} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2n-2} - a_{2n-1}) - a_{2n} \le a_1$$

So s_{2n} is increasing and bounded above, so $s_{2n} \to s$. Also note $s_{2n+1} = s_{2n} + a_{2n+1} \to s + 0 = s$. This implies that s_n converges to s:

Given $\varepsilon > 0$, there exists N_1 such that for all $n \ge N_1$, $|s_{2n} - s| < \varepsilon$ and there exists N_2 such that for all $n \ge N_2$, $|s_{2n+1} - s| < \varepsilon$. Take $N = 2 \max\{N_1, N_2\} + 1$. Then if $k \ge N$, we have $|s_k - s| < \varepsilon$, so $s_k \to s$.

Start of lecture 5

Absolute Convergence

Definition. Take $a_n \in \mathbb{C}$. If $\sum_{n=1}^{\infty} |a_n|$ is convergent, then the series is called absolutely convergent.

Note. Since $|a_N| \ge 0$, we can use the previous tests to check absolute convergence. This is particularly useful for $a_n \in \mathbb{C}$.

Theorem 1.13. If $\sum a_n$ is absolutely convergent, then it is convergent.

Proof. Suppose first $a_n \in \mathbb{R}$. Let

$$v_N = \begin{cases} a_n & \text{if } a_n \ge 0\\ 0 & \text{if } a_n < 0 \end{cases}$$
$$w_n = \begin{cases} 0 & \text{if } a_n \ge 0\\ -a_n & \text{if } a_n < 0 \end{cases}$$
$$v_n = \frac{|a_n| + a_n}{2}, \qquad w_n = \frac{|a_n| - a_n}{2}$$

Clearly, $v_n, w_n \ge 0$. Note $a_n = v_n - w_n$, and $|a_n| = v_n + w_n \ge v_n, w_n$. So if $\sum |a_n|$ converges, by comparison $\sum v_n$, $\sum w_n$ also converge, hence $\sum a_n$ converges. If $a_n \in \mathbb{C}$, then $a_n = x_n + iy_n$. Now $|x_n|, |y_n| \le |a_n|$, so $\sum x_n$ and $\sum y_n$ are absolutely convergent, hence $\sum x_n$ and $\sum y_n$ converge. Since $a_n = x_n + iy_n$ we have that $\sum a_n$ converges as well.

Examples

- (1) $\sum \frac{(-1)^{n+1}}{n}$ converges but is *not* absolutely convergent.
- (2) $\sum_{n=1}^{\infty} \frac{z^n}{2^n}$ for $z \in \mathbb{C}$, then if |z| < 2 we have absolute convergence. If $|z| \ge 2$, $\left|\frac{z}{2}\right|^n \ge 1$, so a_n does not tend to 0, hence the series diverges.

Definition. If $\sum a_n$ converges, but $\sum |a_n|$ does not, it is said sometimes, that $\sum a_n$ is *conditionally* convergent.

"conditional": because the sum to which the series converge is conditional on the order in which elements of the sequence are taken. If *rearranged*, the sum is altered.

Example. (Example Sheet 1, Q7) (i) $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$. (ii) $1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} + \frac{1}{9} + \cdots$. Let s_n be the partial sum of (i) and t_n the partial sum of (ii). Then $s_n \to s > 0$, and $t_n \to \frac{3s}{2}$.

Rearrangement:

Definition. Let σ be a bijection of the positive integers,

$$a'_n = a_{\sigma(n)}$$

is a rearrangement.

Theorem 1.14. If $\sum a_n$ is absolutely convergent, every series consisting of the same terms in any order (i.e. a rearrangement) has the *same sum*.

Proof. We do the proof first for $a_n \in \mathbb{R}$. Let $\sum a'_n$ be a rearrangement of $\sum a_n$. Let $s_n = \sum_{j=1}^n a_j$ and $t_n = \sum_{j=1}^n a'_j$, $s = \sum_{j=1}^\infty a_j$. Suppose first that $a_n \ge 0$. Given n, we can find q such that sq satisfies

 $t_n \le sq \le s$

Now since t_n is an increasing sequence bounded above, $t_n \to t$. Clearly $t \leq s$. But by symmetry, $s \leq t$, hence t = s.

If a_n has any sign, consider v_n and w_n from theorem 1.13. Consider $\sum a'_n$, $\sum v'_n$ and $\sum w'_n$. Since $\sum |a_n|$ converges, both $\sum v_n$ and $\sum w_n$ converge. Use that $v_n, w_n \ge 0$ to deduce that $\sum v'_n = \sum v_n$ and $\sum w'_n = \sum w_n$. But $a_n = v_n - w_n$ hence $\sum a_n = \sum a'_n$. For the case $a_n \in \mathbb{C}$, write $a_n = x_n + iy_n$. Since $|x_n|, |y_n| \le |a_n|$, we have that $\sum x_n$ and $\sum y_n$ are absolutely convergent. By the previous case, $\sum x'_n = \sum x_n$ and $\sum y'_n = \sum y_n$ since $a'_n = x'_n + iy'_n \implies \sum a_n = \sum a'_n$.

Start of lecture 6

2 Continuity [3]

Let $E \subseteq \mathbb{C}$ non-empty, $f : E \to \mathbb{C}$ any function, and let $a \in E$. (This includes the case in which f Is real-valued and $E \subseteq \mathbb{R}$).

Definition 1. f is continuous at $a \in E$ if for every sequence $z_n \in E$ with $z_n \to a$, we have $f(z_n) \to f(a)$.

Definition 2. f is continuous at $a \in E$, if given $\varepsilon > 0$, $\exists \delta > 0$ such that if $|z-a| < \delta$, $z \in E$, then

$$|f(z) - f(a)| < \varepsilon$$

 $(\varepsilon - \delta \text{ definition}).$

We will prove that these two definitions are equivalent.

Proof. We know that given $\varepsilon > 0$, $\exists \delta > 0$ such that $|z-a| < \delta$, $z \in E$, then $|f(z)-f(a)| < \varepsilon$. Let $z_n \to a$. Then $\exists n_0$ such that $\forall n \ge n_0$ we have $|z_n-a| < \delta$ hence $|f(z_n)-f(a)| < \varepsilon$ so $f(z_n) \to f(a)$. For the other direction, assume that $f(z_n) \to f(a)$ whenever $z_n \to a$ $(z_n \in E)$. Suppose f is not continuous at a according to definition 2. Then:

 $\exists \varepsilon > 0$ such that $\forall \delta > 0$, there exists $z \in E$ such that $|z - a| < \delta$ and $|f(z) - f(a)| \ge \varepsilon$.

Let $\delta = \frac{1}{n}$, from the above we get z_n such that $|z_n - a| < \frac{1}{n}$ and $|f(z_n) - f(a)| \ge \varepsilon$. Clearly $z_n \to a$, but $f(z_n)$ does not tend to f(a) because $f(z_n) - f(a)| \ge \varepsilon$, contradiction.

Proposition 2.1. $a \in E$, $g, f : E \to \mathbb{C}$ continuous at a_{ξ} . Then so are the functions f(z) + g(z), f(z)g(z) and $\lambda f(z)$ for any constant λ . In addition if $f(z) \neq 0 \forall z \in E$ then $\frac{1}{f}$ is continuous at a.

Proof. Using definition 1, this is obvious. Using the analogous results for sequences (lemma 1.1), for example if $z_n \to a$ then $f(z_n) \to f(a)$ and $g(z_n) \to g(a)$ so by lemma 1.1 $f(z_n) + g(z_n) \to f(a) + g(a)$ etc.

The function f(z) = z is continuous, so by using the proposition, we get that every polynomial is continuous at every point in \mathbb{C} .

Note. We say that f is continuous on E if it is continuous at every $a \in E$.

Remark. Still it is *instructive* to prove proposition 2.1 directly from the ε - δ definition.

Next we look at compositions.

Theorem 2.2. Let $f : A \to \mathbb{C}$ and $g : B \to \mathbb{C}$ and $g : B \to \mathbb{C}$ be two functions such that $f(A) \subset B$. Suppose f is continuous at $a \in A$ and g is continuous at f(a). Then $g \circ f : A \to \mathbb{C}$ is continuous at a.

Proof. Take any sequence $z_n \to a$. By assumption $f(z_n) \to f(a)$. Set $w_n = f(z_n) \in B$, $w_n \to f(a)$; thus $g(w_n) = g(f(z_n)) \to g(f(a))$.

Examples

(3)

(1) $f : \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

 $\sin x$ is continuous (to be proved later!)

if $x \neq 0$, then 2.1 and 2.2 imply that f(x) is continuous at every $x \neq 0$. Discontinuous at 0 because let $x_n = \frac{1}{(2n+\frac{1}{2})\pi}$, then $f(x_n) = 1$, $x_n \to 0$ but f(0) = 0.

(2)
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

f is continuous at 0, take $x_n \to 0$ then

$$|f(x_n)| \le |x_n|$$

so $f(x_n) \to 0 = f(0)$.

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q} \end{cases}$$

Discontinuous at every point: if $x \in \mathbb{Q}$, take a sequence $x_n \to x$ with $x_n \notin \mathbb{Q}$, then $f(x_n) = 0$ which doesn't tend to f(x) = 1. Similarly if $x \notin \mathbb{Q}$, take $x_n \to x$ with $x_n \in \mathbb{Q}$. Then $f(x_n) = 1$ so doesn't tend to f(x) = 0.

Limit of a function

Start of lecture 7

 $f: E \subseteq \mathbb{C} \to \mathbb{C}$. We wish to define what is meant by $\lim_{z\to a} f(z)$, even when a might *not* be in *E*. For example $\lim_{z\to 0} \frac{\sin z}{z}$, with $E = \mathbb{C} \setminus \{0\}$. Also, if $E = \{0\} \cup [1, 2]$ it does not make sense to speak about $z \in E$, $z \neq 0$, $z \to 0$.

Definition. $E \subseteq \mathbb{C}$, $a \in \mathbb{C}$. We say that a is a *limit point* of E if for any $\delta > 0$, $\exists \in E$ such that $0 < |z - a| < \delta$.

Remark. a is a limit point if and only if \exists a sequence $z_n \in E$ such that $z_n \to a$ and $z_n \neq a \forall n$. (Check the equivalence!)

Definition. $f: E \subseteq \mathbb{C} \to \mathbb{C}$ and let $a \in \mathbb{C}$ be a limit point of E. We say that $\lim_{z\to a} f(z) = l$ ("f tends to l as z tends to a") if given $\varepsilon > 0$, $\exists \delta > 0$ such that whenever $0 < |z - a| < \delta$ and $z \in E$, then $|f(z) - l| < \varepsilon$.

Equivalently: $f(z_n) \to l$ for every sequence $z_i \in E$, $z_n \neq a$ and $z_n \to a$ (proved exactly as last time with definition 1 \iff definition 2).

Remark. Straight from the definitions we have that if $a \in E$ is a limit point, then $\lim_{z\to a} f(z) = f(a)$ if and only if f is continuous at a.

If $a \in E$ is *isolated* (i.e. $a \in E$ and is not a limit point) then continuity of f at a always holds.

The limit of functions has very similar properties to limit of sequences.

(1) It is unique, $f(z) \to A$ and $f(z) \to B$ as $z \to a$

$$|A - B| \le |A - f(z)| + |f(z) - B|$$

if $z \in E$ is such that $|z - a| < \delta_1, \delta_2$ then $|A - B| < 2\varepsilon$ so A = B. (the \exists of such z is consequence of the condition that a is a limit point of E).

(2) $f(z) + g(z) \to A + B$ $(f(z) \to A, g(z) \to B \text{ as } z \to a).$

(3)
$$f(z)g(z) \to AB$$

(4) if $B \neq 0$, $\frac{f(z)}{g(z)} \rightarrow \frac{A}{B}$ all proved in the same way as before.

2.1 The Intermediate Value Theorem

Theorem 2.3. $f : [a, b] \to \mathbb{R}$ continuous and $f(a) \neq f(b)$. Then f takes every value which lies between f(a) and f(b).

(for all $f(a) < \eta < f(b)$, $\exists c \in [a, b]$ such that $f(c) = \eta$)

Proof. Without loss of generality we may suppose that f(a) < f(b). Take $f(a) < \eta < f(b)$. Let

$$S = \{ x \in [a, b] : f(x) < \eta \}$$

 $a \in S$, so $S \neq \emptyset$. Clearly S is bounded above by b. Then there is a supremum c where $c \leq b$. By definition of supremum, given n, there exists $x_n \in S$ such that

$$c - \frac{1}{n} < x_n \le c$$

so, $x_n \to c$ since $x_n \in S$, $f(x_n) < \eta$. By continuity of f, $f(x_n) \to f(c)$. Thus $f(c) \leq \eta$. Now observe that $c \neq b$. Then for n large, we can consider $c + \frac{1}{n} \in [a, b]$ and $c + \frac{1}{n} \to c$. Again by continuity

$$f\left(c+\frac{1}{n}\right) \to f(c)$$

but since $c + \frac{1}{n} > c$, $f(c + \frac{1}{n}) \ge \eta$ (by definition of supremum). Hence $f(c) \ge \eta$ and therefore $f(c) = \eta$.

Remark. The theorem is very useful for finding zeros or fixed points.

Example. Existence of the *n*-th root of a positive real number.

$$f(x) = x^n, \qquad x \ge 0$$

Let y be a positive real number. f is continuous on [0, 1+y] and

$$0 = f(0) < y < (1+y)^n = f(1+y)$$

so by the Intermediate Value Theorem, $\exists c \in (0, 1+y)$ such that f(c) = y, i.e. $c^n = y$ so c is a positive *n*-root of y. We also have uniqueness! (check)

Bounds of a continuous function

Start of lecture 8

Theorem 2.4. Let $f : [a, b] \to \mathbb{R}$ be continuous. Then there exists K such that $|f(x)| \le K \ \forall \ x \in [a, b].$

Proof. We argue by contradiction. Suppose statement is false. Then given any integer $n \ge 1$, there exists $x_n \in [a, b]$ such that $|f(x_n)| > n$. By Bolzano-Weierstrass, x_n has a convergent subsequence $x_{n_j} \to x$. Since $a \le x_{n_j} \le b$, we must have $x \in [a, b]$. By the continuity of f, $f(x_{n_j}) \to f(x)$ but $|f(x_{n_j}| > n_j \to \infty)$ (as $j \to \infty$). \bigotimes

Theorem 2.5. $f : [a, b] \in \mathbb{R}$ continuous. Then $\exists x_1, x_2 \in [a, b]$ such that

$$f(x_1) \le f(x) \le f(x_2)$$

for all $x \in [a, b]$. ("A continuous function on a closed bounded interval is bounded and attains its bounds").

Proof. Let $A = \{f(x) : x \in [a, b]\} = f([a, b])$. By Theorem 2.4, A is bounded. Since it is clearly non-empty, it has supremum, M. By definition of supremum, given an integer $n \ge 1, \exists x_n \in [a, b]$ such that

$$M - \frac{1}{n} < f(x_n) \le M \tag{(*)}$$

By Bolzano-Weierstrass, $\exists x_{n_j} \to x \in [a, b]$. Since $f(x_{n_j}) \to M$ (by (*)) and f is continuous, we deduce that f(x) = M. So $x_2 := x$. Similarly for the minimum.

Proof (alternative proof). $A = f([a, b]), M = \sup A$ as before. Suppose $\not\exists x_2$ such that $f(x_2) = M$. Let

$$g(x) = \frac{1}{M - f(x)}$$

for $x \in [a, b]$. It is defined and continuous on [a, b]. By Theorem 2.4 applied to $g, \exists k > 0$ such that

$$g(x) \le K \qquad \forall \ x \in [a, b]$$

This means that $f(x) \leq M - \frac{1}{k}$ for all $x \in [a, b]$. This is absurd since it contradicts that M is the supremum.

Note. Theorems 2.4 and 2.5 are *false* if the interval is not *closed* and bounded. For example, consider

$$(0,1], \qquad f(x) = \frac{1}{x}$$

2.2 Inverse Functions

Definition. f is increasing for $x \in [a, b]$ if $f(x_1) \leq f(x_2)$ for all x_1, x_2 such that $a \leq x_1 < x_2 \leq b$. If $f(x_1) < f(x_2)$ we say that f is strictly increasing. Similarly for decreasing and strictly decreasing.

Theorem 2.6. $f : [a, b] \to \mathbb{R}$ continuous and strictly increasing function $x \in [a, b]$. Let c = f(a) and d = f(b). Then $f : [a, b] \to [c, d]$ is bijective and the inverse $g := f^{-1} : [c, d] \to [a, b]$ is continuous and strictly increasing.

Remark. A similar theorem holds for strictly *decreasing* functions.

Proof.

$$g: [c,d] \to [a,b]$$

for f.

- g is strictly increasing because $y_1 < y_2$, $y_1 = f(x_1)$, $y_2 = f(x_2)$. If $x_2 \le x_1$ then since f is increasing $f(x_2) \le f(x_1)$ and so $y_2 \le y_1$, contradiction.
- g is continuous because let $\varepsilon > 0$ be given, then let $k_1 = f(h-\varepsilon)$ and $k_2 = f(h+\varepsilon)$. f is strictly increasing so $k_1 < k < k_2$. If $k_1 < y < k_2$ then $h-\varepsilon < g(y) < h+\varepsilon$ so gis continuous at k. Here we took $k \in (c, d)$ but a very similar argument establishes continuity at the endpoints (check!)

Start of lecture 9

3 Differentiability [5]

Let $f: E \subseteq \mathbb{C} \to \mathbb{C}$, most of the time $E = \text{interval} \subseteq \mathbb{R}$.

Definition. Let $x \in E$ be a point such that $\exists x_n \in E$ with $x_n \neq x \forall n$ and $x_n \to x$ (i.e. a limit point). f is said to be *differentiable* at x with derivative f'(x) if

$$\lim_{y \to x} \frac{f(y) - f(x)}{y - x} = f'(x)$$

If f is differentiable at each $x \in E$ then we say that f is differentiable on E. (Think of E as an interval or a disc in the case of \mathbb{C}).

Important Remarks

(1) Other common notations:

$$\frac{\mathrm{d}y}{\mathrm{d}x} \qquad \frac{\mathrm{d}f}{\mathrm{d}x}$$

(2)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \ (y = x + h)$$

(3) Another look at the definition: Let

$$\varepsilon(h) := f(x+h) - f(x) - hf'(x)$$

then

$$\lim_{h \to 0} \frac{\varepsilon(h)}{h} = 0$$
$$f(x+h) = f(x) + hf'(x) + \varepsilon(h)$$

Alternative definition of differentiability:

Definition. f is differentiable at x if $\exists A$ and ε such that

$$f(x+h) = f(x) + hA + \varepsilon(h)$$

where

$$\lim_{h \to 0} \frac{\varepsilon(h)}{h} = 0$$

If such an A exists, then it is *unique* since

$$A = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- (4) If f is differentiable at x then f is continuous at x since $\varepsilon(h) \to 0$, so $f(x+h) \to f(x)$ as $h \to 0$.
- (5) Alternative ways of writing things:

$$f(x+h) = f(x) + hf'(x) + h\varepsilon_f(h)$$

with $\varepsilon_f(h) \to 0$ as $h \to 0$. Or

$$f(x) = f(a) + (x - a)f'(a) + (x - a)\varepsilon_f(x)$$

where $\lim_{x\to a} \varepsilon_f(x) = 0$ as $x \to a$.

Example. $f(x) = |x|, f : \mathbb{R} \to \mathbb{R}.$

Clearly f'(x) = 1 for x > 0 and f'(x) = -1 for x < 0. Now for x = 0: Take $h_n > 0$:

$$\lim_{n \to \infty} \frac{f(h_n) - f(0)}{h_n} = \lim \frac{h_n}{h_n} = 1$$

Take $h_n < 0$:

$$\lim_{n \to \infty} \frac{f(h_n) - f(0)}{h_n} = \lim_{n \to \infty} -\frac{h_n}{h_n} = -1$$

so *not* differentiable at x = 0.

Differentiation of Sums, Products, etc

Proposition 3.1. (i) If f(x) = c for all $x \in E$ then f is differentiable with f'(x) = 0.

(ii) f, g differentiable at x, then so is f + g and

$$(f+g)'(x) = f'(x) + g'(x)$$

(iii) f, g differentiable at x, then so is fg and

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x)$$

(iv) f differentiable at x and $f(x) \neq 0 \ \forall \ x \in E$, then $\frac{1}{f}$ is differentiable at x and

$$\left(\frac{1}{f}\right)'(x) = -\frac{f'(x)}{[f(x)]^2}$$

Proof.

- (i) $\lim_{h \to 0} \frac{c-c}{h} = 0$
- (ii)

$$\lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= f'(x) + g'(x)$$

using properties of limits

(iii)
$$\phi(x) = f(x)g(x)$$
.

$$\lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h} = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h}$$

$$= \lim_{h \to 0} f(x+h) \left[\frac{g(x+h) - g(x)}{h} \right] + g(x) \left[\frac{f(x+h) - f(x)}{h} \right] = f(x)g'(x) + f'(x)g(x)$$
using standard properties of limits and the fact that f is continuous at x

using standard properties of limits and the fact that f is continuous at x.

(iv) $\phi(x) = \frac{1}{f(x)}$ $\lim_{h \to 0} \frac{\phi(x+h) - \phi(x)}{h} = \lim_{h \to 0} \frac{\frac{1}{f(x+h)} - \frac{1}{f(x)}}{h}$ $= \lim_{h \to 0} \frac{f(x) = f(x) + h}{h} \times \frac{1}{f(x)f(x+h)} = -\frac{f'(x)}{[f(x)]^2}$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

Start of lecture 10

Example. $f(x) = x^n$, $n \in \mathbb{Z}$, n > 0. n = 1, clearly f(x) = x and f'(x) = 1.

Claim. $f'(x) = nx^{n-1}$

Proof. Induction (n = 1 is clear). $f(x) = xx^n = x^{n+1}$. So

$$f'(x) = x^n + x(nx^{n-1}) = (n+1)x^n$$

 $\hfill\square$ n=0 can be done separately, and negative n can be done using Proposition 3.1 (iv):

$$f'(x) = -\frac{(x^n)'}{x^{2n}} = -\frac{nx^{n-1}}{x^{2n}} = -nx^{n-1}$$

Here is another useful result:

Theorem 3.2 (Chain rule). $f : U \to \mathbb{C}$ is such that $f(x) \in V \forall x \in U$. If f is differentiable at $a \in U$ and $g : V \to \mathbb{C}$ is differentiable at f(a), then $g \circ f$ is differentiable at a with

$$(g \circ f)'(a) = f'(a)g'(f(a))$$

Proof. We know:

$$f(x) = f(a) + (x - a)f'(a) + \varepsilon_f(x)(x - a)$$

(where $\lim_{x\to a} \varepsilon_f(x) = 0$). Also

$$g(y) = g(b) + (y - b)g'(b) + \varepsilon_g(y)(y - b)$$

(where $\lim_{y\to b} \varepsilon_g(y) = 0$). Let b = f(a). Set $\varepsilon_f(a) = 0$ and $\varepsilon_g(b) = 0$ to make them continuous at x = a and y = b. Now y = f(x) gives

$$g(f(x)) = g(b) + (f(x) - b)g'(b) + \varepsilon_g(f(x))(f(x) - b)$$

$$= g(f(a)) + [(x - a)f'(a) + \varepsilon_f(x)(x - a)][g'(B) + \varepsilon_g(f(x))]$$

$$= g(f(a)) + (x - a)f'(a)g'(b) + (x - a)[\varepsilon_f(x)g'(b) + \varepsilon_g(f(x))(f'(a) + \varepsilon_f(x))]$$

$$\sigma(x) = \underbrace{\varepsilon_f(x)g'(b)}_{\to 0} + \underbrace{\varepsilon_g(f(x))}_{\to 0} \underbrace{(f'(a) + \varepsilon_f(x))}_{\to f'(a)} \to 0$$

_	_	_
г		٦
		- 1
		- 1

Examples

(1) $f(x) = \sin(x^2), \ (\sin x)' = \cos x$

$$f'(x) = 2x\cos(x^2)$$

(2)

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

From previous lectures f is continuous. It is differentiable at every $x \neq 0$ by the previous theorems. At x = 0,

$$\frac{f(t) - f(0)}{t} = \sin\left(\frac{1}{t}\right)$$

so the limit does not exist, so f is not differentiable at x = 0.

The Mean Value Theorem

Theorem 3.3 (Rolle's Theorem). Let $f : [a, b] \to \mathbb{R}$ continuous on [a, b] and differentiable on (a, b). If f(a) = f(b) then $\exists c \in (a, b)$ such that f'(c) = 0.

Proof. Let $M = \max_{x \in [a,b]} f(x)$ and $m = \min_{x \in [a,b]} f(x)$. Recall by Theorem 2.5 that these values are achieved. Let k = f(a) = f(b). If M = m = k, then f is constant and $f'(c) = 0 \forall c \in (a, b)$. If f is not constant then M > k or m < k. Suppose M > k. By Theorem 2.5 $\exists c \in (a, b)$ such that f(c) = M. If f'(c) > 0, then there are values to the right of c for which f(x) > f(c). Why?

$$f(h+c) - f(c) = h(f'(c) + \varepsilon_f(h))$$

since $\varepsilon_f(h) \to 0$ as $h \to 0$, $f'(c) + \varepsilon_f(h) > 0$ for h small. This contradicts that M is the maximum. Similarly if f'(c) < 0 there exists x to the left of c for which f(x) > f(c). Hence f'(c) = 0.

Start of lecture 11

Theorem 3.4 (Mean Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Then $\exists c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a)$$

Proof. Write

 $\phi(x) = f(x) - kx$ choose k such that $\phi(a) = \phi(b)$. Hence f(b) - bk = f(a) - ak

=

$$\Rightarrow k = \frac{f(b) - f(a)}{b - a}$$

By Rolle's theorem applied to ϕ , $\exists c \in (a, b)$ such that $\phi'(c) = 0$, i.e. f'(c) = k.

Remark. We will often write

$$f(a+h) = f(a) + hf'(a+\theta h)$$

for $\theta \in (0, 1)$. (Note that $\theta = \theta(h)!$)

Corollary 3.5. $f : [a, b] \to \mathbb{R}$ continuous and differentiable on (a, b).

- (i) If $f'(x) > 0 \ \forall x \in (a, b)$ then f is strictly increasing. (i.e. if $b \ge y > x \ge a$, then f(y) > f(x))
- (ii) If $f'(x) \ge 0 \ \forall x \in (a, b)$ then f is increasing (i.e. if $b \ge y > x \ge a$ then $f(y) \ge f(x)$)
- (iii) If $f'(x) = 0 \ \forall x \in (a, b)$ then f is constant on [a, b].

Proof.

(i) MVT

$$\implies f(y) - f(x) = f'(c)(y - x)$$
$$f'(c) > 0 \implies f(y) > f(x)$$

- (ii) Same but $f(c) \ge 0 \implies f(y) \ge f(x)$.
- (iii) Take $x \in [a, b]$. Then use the MVT in [a, x] to get $c \in (a, x)$ such that

$$f(x) - f(a) = f'(c)(x - a) = 0$$
$$\implies f(x) = f(a)$$

so f is continuous.

Inverse Rule / Inverse Function Theorem

Theorem 3.6. $f : [a, b] \to \mathbb{R}$ continuous and differentiable on (a, b) with $f'(x) > 0 \forall x \in (a, b)$. Let f(a) = c and f(b) = d. Then the function $f : [a, b] \to [c, d]$ is bijective and f^{-1} is differentiable with $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}$ *Proof.* By Corollary 3.5, f is strictly increasing on [a, b]. By Theorem 2.6 $\exists y : [c, d] \rightarrow [a, b]$ which is a continuous strictly increasing inverse of f. Need to prove that g is differentiable and that

$$g'(y) = \frac{1}{f'(x)}$$

where y = f(x) and $x \in (a, b)$. If $k \neq 0$ is given, let h be given by

$$y + k = f(x + h)$$

That is, g(y+k) = x+h, $h \neq 0$. Then

$$\frac{g(y+k) - g(y)}{k} = \frac{x+h-x}{f(x+h) - f(x)}$$

Let $k \to 0$, then $h \to 0$ (since g is continuous), and then

$$g'(y) = \lim_{k \to 0} \frac{g(y+k) - g(y)}{k} = \frac{1}{f'(x)}$$

L			

Example. $g(x) = x^{\frac{1}{q}}$ (x > 0, q a positive integer).

$$f(x) = x^q, \qquad f'(x) = qx^{q-1}$$

f is differentiable, then so is g and by Theorem 3.6 (inverse rule)

$$g'(x) = \frac{1}{q(x^{\frac{1}{q}})^{q-1}} = \frac{1}{q}x^{\frac{1}{q}-1}$$

Remark. If $g(x) = x^r$, $r \in \mathbb{Q}$ then $g'(x) = rx^{r-1}$ (check!)

Suppose $f, g : [a, b] \to \mathbb{R}$ continuous and differentiable on (a, b) and $g(a) \neq g(b)$, then the MVT gives us $s, t \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{(b - a)f'(s)}{(b - a)g'(t)} = \frac{f'(s)}{g'(t)}$$

Cauchy showed that we can take s = t.

Theorem 3.7 (Cauchy's Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b). Then $\exists t \in (a, b)$ such that

$$(f(b) - f(a))g'(t) = f'(t)(g(b) - g(a))$$

Note. We recover the MVT if we take g(x) = x.

Start of lecture 12

Proof. Let

$$\phi(x) = \begin{vmatrix} 1 & 1 & 1 \\ f(a) & f(x) & f(b) \\ g(a) & g(x) & g(b) \end{vmatrix}$$

 ϕ is continuous on [a, b] and differentiable on (a, b). Also

$$\phi(a) = \phi(b) = 0$$

By Rolle's Theorem $\exists t \in (a, b)$ such that

$$\phi'(x) = f'(x)g(b) - g'(x)f(b) + f(a)g'(x) - g(a)f'(x)$$
$$= f'(x)[g(b) - g(a)] + g'(x)[f(a) - f(b)]$$

 $\phi'(t) = 0$

and $\phi'(t) = 0$ gives the desired result. "Lesson": good choice of auxiliary function + Rolle!

Example (L'Hôpital's Rule). The example:

$$\lim_{x \to 0} \frac{e^x - 1}{\sin x} = \lim_{x \to 0} \frac{e^x - e^0}{\sin x - \sin 0}$$
$$= \lim_{x \to 0} \frac{e^t}{\cos t} = 1$$

where $t = t(x) \in (0, x)$ is chosen using Cauchy's Mean Value Theorem.

Goal: we want to extend the MVT to include higher order derivatives.

Theorem 3.8 (Taylor's Theorem With Lagrange's Remainder). Suppose f and its derivatives up to order h - 1 are continuous in [a, a + h] and $f^{(n)}$ exists for $x \in (a, a + h)$. Then

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^{n-1}f^{(n-1)}(a)}{(n-1)!} + \frac{h^n}{n!}f^{(n)}(a+\theta h)$$

where $\theta \in (0, 1)$.

Note. (1) For n = 1 we get back MVT, so this is a "*n*-th order MVT". (2) $R_n = \frac{h^n}{n!} f^{(n)}(a + \theta h)$ is known as Lagrange's form of the remainder

Proof. Define $0 \le t \le h$

$$\phi(t) = f(a+t) - f(a) - tf'(a) - \dots - \frac{t^{n-1}}{(n-1)!} f^{(n-1)}(a) - \frac{t^n}{n!} B$$

where we choose B such that $\phi(h) = 0$. (Note $\phi(0) = 0$.) (Recall that in the proof of the MVT we used f(x) - kx and picked k so we could use Rolle). We see that

$$\phi(0) = \phi; (0) = \dots = \phi^{(n-1)}(0) = 0$$

We use Rolle's Theorem then *n*-times. Since $\phi(0) = \phi(h) = 0$

Rolle
$$\implies \phi'(h_1) = 0 \qquad 0 < h_1 < h_2$$

Since $\phi'(0) = 0 = \phi'(h_1)$

Rolle
$$\implies \phi''(h_2) = 0$$
 $0 < h_2 < h_1$

Finally $\phi^{(n-1)}(0) = \phi^{(n-1)}(h_{n-1}) = 0$

Rolle
$$\implies \phi^{(n)}(h_n) = 0$$
 $0 < h_n < h_{n-1} < \dots < h$

so $h_n = \theta h$ for $\theta \in (0, 1)$. Now

$$\phi^{(n)}(t) = f^{(n)}(a+t) - B$$
$$\implies B = f^{(n)}(a+\theta h)$$

Set t = h, $\theta(h) = 0$ and put this value of B in the second line in the proof.

Theorem 3.9 (Taylor's Theorem with Cauchy's Form of Remainder). With the same hypothesis as in Theorem 3.8 and a = 0 (to simplify) we have

$$f(h) = f(0) + hf'(0) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + R_n$$

where

$$R_n = \frac{(1-\theta)^{n-1} f^{(n)}(\theta h) h^n}{(n-1)!}$$

for $\theta \in (0, 1)$.

Proof. Define

$$F(t) = f(h) - f(t) - (h-t)f'(t) - \dots - \frac{(h-t)^{n-1}f^{(n-1)}(t)}{(n-1)!}$$

for $t \in [0, h]$.

$$F'(t) = -f'(t) + f'(t) - (h-t)f''(t) + (h-t)f''(t) - \frac{(h-t)^2}{2}f'''(t) + \dots - \frac{(h-t)^{n-1}}{(n-1)!}f^{(n)}(t)$$
$$\implies F'(t) = -\frac{(h-t)^{n-1}}{(n-1)!}f^{(n)}(t)$$

 Set

$$\phi(t) = F(t) - \left[\frac{h-t}{h}\right]^p F(0)$$

with $p \in \mathbb{Z}, 1 \le p \le n$. Then $\phi(0) = \phi(h) = 0$. By Rolle's $\exists \ \theta \in (0, 1)$ such that

$$\phi'(\theta h) = 0$$

but

$$\phi'(\theta h) = F'(\theta h) + \frac{p(1-\theta)^{p-1}}{h}F(0) = 0$$

$$\implies 0 = -\frac{h^{n-1}(1-\theta)^{n-1}}{(n-1)!}f^{(n)}(\theta h) + \frac{p(1-\theta)^{p-1}}{h}\left[f(h) - f(0) - hf'(0) - \dots - \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0)\right]$$

$$\implies f(h) = f(0) + hf'(0) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n-1)}(0) + \frac{h^n(1-\theta)^{n-1}}{(n-1)!p(1-\theta)^{p-1}}f^{(n)}(\theta h)$$

If p = n we get Lagrange's remainder. If p = 1 we get Cauchy's remainder.

Start of lecture 13

To get a Taylor series for f one needs to show that $R_n \to 0$ as $n \to \infty$. This requires "estimates" and "effort".

Remark. Theorems 3.8 and 3.9 work equally well in an interval [a + h, a] with h < 0.

Example. The binomial *series*:

$$f(x) = (1+x)^r, \qquad r \in \mathbb{Q}$$

Claim. If |x| < 1, then

$$(1+x)^r = 1 + \binom{r}{1}x + \dots + \binom{r}{n}x^n + \dots$$

where

$$\binom{r}{n} \stackrel{\text{def}}{=} \frac{r(r-1)\cdots(r-n+1)}{n!}$$

Proof. Clearly

$$f^{(n)}(x) = r(r-1)\cdots(r-n+1)(1+x)^{r-n}$$

If $r \in \mathbb{Z}, r \ge 0$, then

$$f^{(r+1)} \equiv 0$$

we have a polynomial of degree r. In general (Lagrange)

$$R_n = \frac{x^n}{n!} f^{(n)}(\theta x) = \binom{r}{n} \frac{x^n}{(1+\theta x)^{n-r}}$$

 $(\theta \in (0,1))$

Note. In principle, θ depends on both x and n.

For 0 < x < 1,

$$(1+\theta x)^{n-r} > 1$$

for n > r. Now observe that the series

$$\sum \binom{r}{n} x^n$$

is absolutely convergent for |x| < 1. Indeed by the ratio test

$$a_n = \binom{r}{n} x^n$$

$$\implies \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{r(r-1)\cdots(r-n+1)(r-n)x^{n+1}}{(n+1)!} \right| \cdots \left| \frac{n!}{r(r-1)\cdots(r-n+1)x^n} \right|$$
$$= \left| \frac{(r-n)x}{n+1} \right| \rightarrow |x| < 1$$

In particular $a_n \to 0$ so $\binom{r}{n} x^n \to 0$. Hence for n > r and 0 < x < 1, we have

$$|R_n| \le |\binom{r}{n} x^n| = |a_n| \to 0$$

as $n \to \infty$. So the claim is proved in the range $0 \le x < 1$. If -1 < x < 0 the argument above breaks, but Cauchy's form for R_n works:

$$R_{n} = \frac{(1-\theta)^{n-1}r(r-1)\cdots(r-n+1)(1+\theta x)^{r-n}x^{n}}{(n-1)!}$$

$$= \underbrace{\frac{r(r-1)\cdots(r-n+1)}{(n-1)!}}_{r\binom{r-1}{n-1}} \frac{(1-\theta)^{n-1}}{(1+\theta x)^{n-r}}x^{n}$$

$$= r\binom{r-1}{n-1}x^{n}(1+\theta x)^{r-1}\left(\underbrace{\frac{1-\theta}{1+\theta x}}_{\forall x \in (-1,1)}\right)^{n-1}$$

$$\cdot |R_{n}| \leq \left|r\binom{r-1}{n-1}x^{n}\right|(1+\theta x)^{r-1}$$

Check:

$$(1+\theta x)^{r-1} \le \max\{1, (1+x)^{r-1}\}\$$

(do it!) Let

$$K_r = |r| \max\{1, (1+x)^{r-1}\}\$$

independent of n.

$$|R_n| \le K_r \left| \binom{r-1}{n-1} x^n \right| \to 0$$

because $a_n \to 0$, thus $R_n \to 0$.

 \Longrightarrow

Remarks on Complex Differentiation

Formally for functions $f : E \subseteq \mathbb{C} \to \mathbb{C}$ we have properties for sums, products, chain rule etc. But it is *much more restrictive* than differentiability on the real line.

Note. IB Complex Analysis explores the consequences of C-differentiability.

Start of lecture 14

4 Power Series [4-5]

We want to look at

$$\sum_{n=0}^{\infty} a_n z^n \tag{(*)}$$

 $z \in \mathbb{C}$, $a_n \in \mathbb{C}$. (The case $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, z_0 fixed, can be reduced to (*) by translation).

Lemma 4.1. If $\sum_{n=0}^{\infty} a_n z_1^n$ converges and $|z| < |z_1|$, then $\sum_{n=0}^{\infty} a_n z^n$ converges absolutely.

Proof. Since $\sum_{n=0}^{\infty} a_n z_1^n$ converges, $a_n z_1^n \to 0$. Thus $\exists K > 0$ such that $|a_n z_1^n| \leq K \forall n$. Then

$$a_n z^n | = |a_n z^n| \frac{|z_1^n|}{|z_1^n|}$$
$$\leq K \underbrace{\left| \frac{z}{z_1} \right|^n}_{<1}$$

Since the geometric series

$$\sum_{n=0}^{\infty} \left| \frac{z}{z_1} \right|^n$$

converges, the lemma follows by comparison.

Using this lemma, we'll prove that every power series has a radius of convergence.

Theorem 4.2. A power series either

- (1) Converges absolutely for all z, or
- (2) Converges absolutely for all z inside a circle |z| = R and diverges for all z outside it, or
- (3) Converges for z = 0 only.

Definition. The circle |z| = R is called the circle of convergence and R is the radius of convergence. In (1) we agree that $R = \infty$ and in (3) R = 0 (so $R \in [0, \infty]$).

Proof. Let

$$S = \{x \in \mathbb{R} : x \ge 0 \text{ and } \sum a_n x^n \text{ converges}\}$$

Clearly $0 \in S$. By Lemma 4.1 if $x_1 \in S$, then $[0, x_1] \subset S$. If $S = [0, \infty)$ we have case (1). If not, there exists a finite supremum for S. Let $R = \sup S < \infty$, $R \ge 0$. If R > 0, we'll prove that if $|z_1| < R$, then $\sum a_n z_1^n$ converges absolutely. Pick R_0 such that

$$|z_1| < R_0 < R$$

Then $R_0 \in S$ and the series converges for $z = R_0$. By Lemma 4.1, $\sum |a_n z_1^n|$ converges. Finally we show that if $|z_2| > R$, then the series does not converge for z_2 . Pick $R < R_0 < |z_2|$. If $\sum a_n z_2^n$ converges then by Lemma 4.1 $\sum a_n R_0^n$ would be convergent, which contradicts that $R = \sup S$.

The following lemma is useful for computing R:

Lemma 4.3. If
$$\left|\frac{a_{n+1}}{a_n}\right| \to l$$
 as $n \to \infty$, then $R = \frac{1}{l}$.

Proof. By the ratio test we have absolute convergence if

$$\lim \left| \frac{a_{n+1}}{a_n} \frac{z^{n+1}}{z^n} \right| < 1$$

so if $|z| < \frac{1}{l}$ we have absolute convergence. If $|z| > \frac{1}{l}$, the series diverges, again by ratio test.

Remark. One can also use the root test to get that if $|a_n|^{1/n} \to l$, then $R = \frac{1}{l}$.

Examples

(1) $\sum_{n=0}^{\infty} \frac{z^n}{n!}$.

$$\left|\frac{a_{n+1}}{a_n}\right| = \frac{n!}{(n+1)!} = \frac{1}{n+1} \to 0 = l \implies R = \infty$$

(2) Geometric series, $\sum_{n=0}^{\infty} z^n$. R = 1. Note that at |z| = 1 we have divergence.

(3)
$$\sum_{n=0}^{\infty} n! z^n$$
.
 $\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n+1)!}{n!} = n+1 \to \infty \implies R = 0$

(4) $\sum_{n=1}^{\infty} \frac{z^n}{n}$, R = 1. (for z = 1 it diverges (harmonic series)) What happens for |z| = 1

and $z \neq 1$? Consider $\sum_{n=1}^{\infty} \frac{z^n}{n} (1-z)$. Then

$$s_N = \sum_{n=1}^N \left(\frac{z^n - z^{n+1}}{n}\right)$$
$$= \sum_{n=1}^N \frac{z^n}{n} - \sum_{n=1}^N \frac{z^{n+1}}{n}$$
$$= \sum_{n=1}^N \frac{z^n}{n} - \sum_{n=2}^{N+1} \frac{z^n}{n-1}$$
$$= z - \frac{z^{N+1}}{N} + \sum_{n=2}^N z^n \left(-\frac{1}{n(n-1)}\right)$$

if |z| = 1, then $\frac{z^{N+1}}{N} \to 0$ as $N \to \infty$ and $\sum \frac{1}{n(n-1)}$ converges, so s_N converges.

(5) $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, R = 1 but converges for all z with |z| = 1.

Conclusion

In principle nothing can be said about |z| = R and each case has to be discussed separately. Within the radius of convergence "life is great". Power series behave as if "they were polynomials".

Start of lecture 15

Theorem 4.4. $f(z) = \sum_{n=0}^{\infty} a_n z^n$ has radius of convergence R. Then f is differentiable at all points with |z| < R with

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$$

Proof (non-examinable). We need two auxiliary lemmas:

Lemma 4.5. If
$$\sum_{n=0}^{\infty} a_n z^n$$
 has radius of convergence R , so do
 $\sum_{n=1}^{\infty} n a_n z^{n-1}$ and $\sum_{n=2}^{\infty} n(n-1)a_n z^{n-2}$

Lemma 4.6. (i)
$$\binom{n}{r} \le n(n-1)\binom{n-2}{r-2}$$
 for all $2 \le r \le n$
(ii) $|(z+h)^n - z^n - nhz^{n-1}| \le n(n-1)(|z|+|h|)^{n-2}|h|^2$ for all $z \in \mathbb{C}, h \in \mathbb{C}$.

Proof of 4.4. (after which we prove the lemmas) By Lemma 4.5 we may define

$$f'(Z) := \sum_{n=1}^{\infty} n a_n z^{n-1} \qquad |z| < R$$

Then we are required to prove that

$$\lim_{h \to 0} \frac{f(z+h) - f(z) - hf'(z)}{h} = 0$$
$$f(z+h) - f(z) - hf'(z)$$

$$\begin{split} I &:= \frac{f(z+n) - f(z) - hf(z)}{h} \\ &= \frac{1}{h} \sum_{n=0}^{\infty} a_n ((z+h)^n - z^n - hnz^{n-1}) \\ |I| &= \frac{1}{|h|} \left| \lim_{N \to \infty} \sum_{n=0}^{N} a_n ((z+h)^n - z^n - nhz^{n-1}) \right| \\ &= \frac{1}{|h|} \lim_{N \to \infty} \left| \sum_{n=0}^{N} a_n ((z+h)^n - z^n - nhz^{n-1}) \right| \\ &\leq \frac{1}{|h|} \sum_{n=0}^{N} |a_n| |(z+h)^n - z^n - nhz^{n-1}| \\ &\leq \frac{1}{|h|} \sum_{n=2}^{\infty} |a_n| n(n-1) (|z| + |h|)^{n-2} |h|^2 \\ &= |h| \sum_{n=2}^{\infty} |a_n| n(n-1) (|z| + |h|)^{n-2} \end{split}$$

By Lemma 4.5, for |h| small enough,

$$\sum_{n=2}^{\infty} |a_n| n(n-1)(|z|+|h|)^{n-2}$$

converges to A(h), but $A(h) \leq A(r)$ for |h| < r and |z| + r < R. Hence

$$|I| \leq |h| A(h) \leq |h| A(r) \to 0$$

as $h \to 0$. \Box Proof of Lemma 4.5. Take z and R_0 such that $0 < |z| < R_0 < R$. Since $a_n R_0^n \to 0$, $\exists K$ such that $|a_n R_0^n| \le K$, $\forall n \ge 0$. Thus

$$|na_n z^{n-1}| = \frac{n}{|z|} |a_n R_0^n| \left| \frac{z}{R_0} \right|^n$$
$$\leq \frac{Kn}{|z|} \left| \frac{z}{R_0} \right|^n$$

But $\sum n \left| \frac{z}{R_0} \right|^n$ converges by the ratio test:

$$\frac{n+1}{n} \left| \frac{z}{R_0} \right|^{n+1} \left| \frac{R_0}{z} \right|^n = \frac{n+1}{n} \left| \frac{z}{R_0} \right| \to \left| \frac{z}{R_0} \right| < 1$$

if |z| > R, the series diverges since $|a_n z^n|$ is unbounded hence so is $n|a_n z^n|$. The same proof applies to $\sum_{n=2}^{\infty} n(n-1)a_n z^{n-2}$. \Box Proof of Lemma 4.6.

(i)
$$\frac{\binom{n}{r}}{\binom{n-2}{r-2}} = \frac{n!}{r!(n-r)!} \frac{(r-2)!(n-r)!}{(n-2)!} = \frac{n(n-1)}{r(r-1)} \le n(n-1)$$

(ii)
$$(z+h)^n - z^n - nhz^{n-1} = \sum_{r=2}^n \binom{n}{r} z^{n-r} h^r$$

Thus

$$\begin{aligned} |(z+h)^n - z^n - nhz^{n-1}| &\leq \sum_{r=2}^n \binom{n}{r} |z|^{n-r} |h|^r \\ &\leq n(n-1) \left[\sum_{r=2}^n \binom{n-2}{r-2} |z|^{n-r} |h|^{r-2} \right] |h|^2 \\ &= n(n-1)(|z|+|h|)^{n-2} |h|^2 \end{aligned}$$

4.1 The Standard Functions

(exponentials, logs, trigonometric, etc)

We have already seen that

$$\sum_{n=0}^{\infty} \frac{z^n}{n!}$$

has $R = \infty$. Define $e : \mathbb{C} \to \mathbb{C}$ by

$$e(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Straight from Theorem 4.4, e is differentiable and

$$e'(z) = e(z)$$

Lemma. If $F : \mathbb{C} \to \mathbb{C}$ has F'(z) = 0 for all $z \in \mathbb{C}$, then F is constant.

Proof. Consider g(t) = F(tz). By chain rule:

g'(t) = F'(tz)z = 0

if g(t) = u(t) + iv(t) then g'(t) = u'(t) + iv'(t) so u' = v' = 0. Apply Corollary 3.5 to get the claim.

Now let $a, b \in \mathbb{C}$. Consider

$$F(z) = e(a + b - z)e(z)$$

F'(z) = -e(a + b - z)e(z) + e(a + b - z)e(z) = 0

so F is constant. Use z = b and z = 0 to deduce that

$$e(a)e(b) = e(a+b)$$

Now we restrict to \mathbb{R} :

Start of lecture 16

Theorem 4.7. (i) $e : \mathbb{R} \to \mathbb{R}$ is everywhere differentiable and e'(x) = e(x)

(ii) e(x+y) = e(x)e(y)

- (iii) e(x) > 0 for all $x \in \mathbb{R}$
- (iv) e is strictly increasing
- (v) $e(x) \to \infty$ as $x \to \infty$, $e(x) \to 0$ as $x \to -\infty$
- (vi) $e : \mathbb{R} \to (0, \infty)$ is a bijection.

Proof.

- (i) Already done.
- (ii) Clearly

$$e(x) > 0 \qquad \forall x \ge 0$$

and e(0) = 1. Also

$$e(0) = e(x - x) = e(x)e(x) = 1 \implies e(-x) > 0$$

for all x > 0.

- (iii) Already done.
- (iv) e'(x) = e(x) > 0 so e is strictly increasing.

(v) e(x) > 1 + x for x > 0 so if $x \to \infty$, $e(x) \to \infty$. For x > 0 since

$$e(-x) = \frac{1}{e(x)}$$

then $e(x) \to 0$ as $x \to -\infty$.

(vi) Injectivity follows right away from being strictly increasing. Surjectivity: Take $y \in (0 \in \infty)$. From (v) there exist $a, b \in \mathbb{R}$ such that

$$e(a) < y < e(b)$$

so by the Intermediate Value Theorem there exists $x \in \mathbb{R}$ such that e(x) = y.

Remark. $e: (\mathbb{R}, +) \to ((0, \infty), \times)$ is a group isomorphism.

Since e is a bijection we have an inverse:

$$l:(0,\infty)\to\mathbb{R}$$

- **Theorem 4.8.** (i) $l: (0, \infty) \to \mathbb{R}$ is a bijection and l(e(x)) = x for all $x \in \mathbb{R}$ and r(l(t)) = t for all $t \in (0, \infty)$.
- (ii) l is differentiable and $l'(t) = \frac{1}{t}$.
- (iii) l(xy) = l(x) + l(y) for all $x, y \in (0, \infty)$.

Proof.

- (i) Obvious from the definition of l.
- (ii) Inverse rule (Theorem 3.6) l is differentiable and

$$l'(t) = \frac{1}{e(l(t))} = \frac{1}{t}$$

(iii) From IA Groups if e is an isomorphism, so is its inverse.

Now define for $\alpha \in \mathbb{R}$ and x > 0:

$$r_{\alpha}(x) \stackrel{\text{def}}{=} e(\alpha l(x))$$

Theorem 4.9. Suppose x, y > 0 and $\alpha, \beta \in \mathbb{R}$. Then

(i)
$$r_{\alpha}(xy) = r_{\alpha}(x)r_{\alpha}(y)$$

(ii) $r_{\alpha+\beta}(x) = r_{\alpha}(x)r_{\beta}(x)$
(iii) $r_{\alpha}(r_{\beta}(x)) = r_{\alpha\beta}(x)$
(iv) $r_{1}(x) = x, r_{0}(x) = 1.$

Proof.

(i)

$$r_{\alpha}(xy) = e(\alpha l(xy))$$

$$= e(\alpha l(x) + \alpha l(y))$$

$$= e(\alpha l(x))e(\alpha l(y))$$

$$= r_{\alpha}(x)r_{\alpha}(y)$$

(ii)

$$r_{\alpha+\beta}(x) = e((\alpha+\beta)l(x))$$

$$= e(\alpha l(x))e(\beta l(x))$$

$$= r_{\alpha}(x)r_{\beta}(x)$$

(iii)

$$\begin{aligned} r_{\alpha}(r_{\beta}(x)) &= r_{\alpha}(e(\beta l(x))) \\ &= e(\alpha le(\beta l(x))) \\ &= e(\alpha \beta l(x)) \\ r_{\alpha\beta}(x) \end{aligned}$$

(iv)
$$r_1(x) = e(l(x)) = x, r_0(x) = e(0) = 1.$$

For
$$n \ge 1, n \in \mathbb{Z}$$

 $r_n(x) = r_{1+\dots+1}(x) = x \cdots x = x^n$
 $r_1(x)r_{-1}(x) = r_0(x) = 1$
 $\implies r_{-1}(x) = \frac{1}{x}$
 $r_{-n}(x) = \frac{1}{x^n}$
 $(r_{\frac{1}{q}}(x))^q = r_1(x) = x$
 $(q \in \mathbb{Z}, q \ge 1)$
 $\implies r_{\frac{1}{q}}(x) = x^{\frac{1}{q}}$

$$r_{\frac{p}{q}}(x) = (r_{\frac{1}{q}}(x))^p = x^{\frac{p}{q}}$$

Thus $r_{\alpha}(x)$ agrees with x^{α} when $a \in \mathbb{Q}$ as previously defined. Now we give them names:

$$exp(x) = e(x) \qquad x \in \mathbb{R}$$
$$\log x = l(x) \qquad x \in (0, \infty)$$
$$x^{\alpha} = r_{\alpha}(x) \qquad \alpha \in \mathbb{R}, x \in (0, \infty)$$
$$e(x) = e(x \log e) = e_x(e) = e^x$$

where

$$e \stackrel{\text{def}}{=} \sum_{n=0}^{\infty} \frac{1}{n!}$$

exp(x) is also a power, which we may as well write as e^x . Finally we compute

$$(x^{\alpha})' = (e^{\alpha \log x})'$$
$$= e^{\alpha \log x} \frac{\alpha}{x}$$
$$= \alpha x^{\alpha - 1}$$

 $f(x) = a^x, a > 0$ then

$$f'(x) = (e^{x \log a})' = e^{x \log a} \log a = a^x \log a$$

Start of lecture 17

Remark. "Exponentials beat polynomials"

$$\lim_{x \to \infty} \frac{e^x}{x^k} = \infty$$

(k > 0). This is easy to prove since

$$e^x = \sum_{j=0}^\infty \frac{x^j}{j!} > \frac{x^n}{n!}$$

for x > 0. Now pick n > k and then

$$\frac{e^x}{x^k} > \frac{x^{n-k}}{n!} \to \infty$$

as $x \to \infty$.

Trigonometric Functions

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^k z^{2k}}{(2k)!}$$
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^k z^{2k+1}}{(2k+1)!}$$

Both power series have infinite radius of convergence and by Theorem 4.4 we get

$$(\sin z)' = \cos z, \qquad (\cos z)' = -\sin z$$

$$(e^{z} = e(z))$$

$$e^{iz} = \sum_{n=0}^{\infty} \frac{(iz)^{n}}{n!} = \sum_{n=0}^{\infty} \frac{(iz)^{2k}}{(2k)!} + \sum_{n=0}^{\infty} \frac{(iz)^{2k+1}}{(2k+1)!}$$

$$(iz)^{2k} = (-1)^{k} z^{2k}, \qquad (iz)^{2k+1} = i(-1)^{k} z^{2k+1}$$

$$\implies e^{iz} = \cos z + i \sin z$$

Similarly

$$e^{-iz} = \cos z - i \sin z$$

which gives

$$\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$$
$$\sin z = \frac{1}{2i}(e^{iz} - e^{-iz})$$

From this we get many trigonometric identities:

$$\cos z = \cos(-z), \qquad \sin(-z) = -\sin z$$
$$\cos(0) = 1, \qquad \sin(0) = 0$$

Addition formulas:

- (1) $\sin(z+w) = \sin z \cos w + \cos z + \sin w$
- (2) $\cos(z+w) = \cos z \cos w \sin z \sin w, \ z, w \in \mathbb{C}.$

These follow from $e^{a+b} = e^a e^b$. To prove (2) write

$$\cos(z+w) = \frac{1}{2}(e^{i(z+w)} + e^{-i(z+w)})$$

= $\frac{1}{2}(e^{iz}e^{iw} + e^{iz}e^{iw})$
$$\cos z \cos w - \sin z \sin w = \frac{1}{4}(e^{iz} + e^{-iz})(e^{iw} + e^{-iw}) + \frac{1}{4}(e^{iz} - e^{-iz})(e^{iw} - e^{-iw})$$

operate to get the result. Also we can easily deduce that $\sin^2 z + \cos^2 z = 1$ for all $z \in \mathbb{C}$. Now if $x \in \mathbb{R}$, then $\sin x, \cos x \in \mathbb{R}$ and so $|\sin x|, |\cos x| \le 1$ for $x \in \mathbb{R}$. **Remark.** They are not bounded over \mathbb{C} . For example take

$$\cos(iy) = \frac{1}{2}(e^{-y} + e^y)$$

 $(y \in \mathbb{R})$ then as $y \to \infty$, $\cos(iy) \to \infty!$

Periodicity of the Trigonmetric Functions

Proposition 4.10. There is a smallest positive number ω (where $\sqrt{2} < \frac{\omega}{2} < \sqrt{3}$) such that

$$\cos\frac{\omega}{2} = 0$$

Proof. If 0 < x < 2 then

$$\sin x = \underbrace{\left(x - \frac{x^3}{3!}\right)}_{>0} + \underbrace{\left(\frac{x^5}{5!} - \frac{x^7}{7!}\right)}_{>0} + \cdots$$

(If 0 < x < 2 then $\frac{x^{2n-1}}{(2n-1)!} > \frac{x^{2n+1}}{(2n+1)!}$) Hence $\sin x > 0$. Since $(\cos x)' = -\sin x < 0$ for 0 < x < 2, $\cos x$ is strictly decreasing. We'll show that $\cos \sqrt{2} > 0$ and $\cos \sqrt{3} < 0$. Then by the intermediate value theorem the existence of ω follows.

$$\cos\sqrt{2} = \underbrace{\left(\frac{(\sqrt{2})^4}{4!} - \frac{(\sqrt{2})^6}{6!}\right)}_{>0} + \underbrace{(\cdots)}_{>0} + \underbrace{(\cdots)}_{>0} + \cdots$$

So $\cos \sqrt{2} > 0$. Now note that

$$\cos\sqrt{3} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \underbrace{\left(\frac{x^6}{6!} - \frac{x^8}{8!}\right)}_{>0} - \cdots$$

But

$$1 - \frac{3}{2} + \frac{9}{4 \times 3 \times 2} = 1 - \frac{3}{2} + \frac{3}{8} = -\frac{1}{8} < 0$$

so $\cos\sqrt{3} < 0$.

Corollary 4.11. $\sin \frac{\omega}{2} = 1$.

Proof. Use $\sin^2 \frac{\omega}{2} + \cos^2 \frac{\omega}{2} = 1$ and $\sin \frac{\omega}{2} > 0$.

Now define $\pi = \omega$.

Theorem 4.12. (1) $\sin\left(z + \frac{\pi}{2}\right) = \cos z$, $\cos\left(z + \frac{\pi}{2}\right) = -\sin z$. (2) $\sin(z + \pi) = -\sin z$, $\cos(z + \pi) = -\cos z$. (3) $\sin(z + 2\pi) = \sin z$, $\cos(z + 2\pi) = \cos z$.

Proof. Immediate from addition formulas and $\cos \frac{\pi}{2} = 0$, $\sin \frac{\pi}{2} = 1$.

This implies

$$e^{iz+2\pi i} = \cos(z+2\pi) + i\sin(z+2\pi)$$
$$= \cos z + i\sin z$$
$$e^{iz}$$

so e^z is periodic with period $2\pi i$.

Remark. "Relation with geometry" Given two vectors $x, y \in \mathbb{R}^2$ define $x \cdot y$ as in vectors and matrices:

$$x \cdot y = x_1 y_2 + x_2 y_2$$

$$x = (x_1, x_2)$$
 $y = (y_1, y_2)$

Cauchy-Schwarz:

$$|x \cdot y| \le \|x\| \|y\|$$

where $||x||^2 = x_1^2 + x_2^2$. So, for $x \neq 0, y \neq 0$

$$-1 \le \frac{x \cdot y}{\|x\| \|y\|} \le 1$$

Define the angle between x and y as the unique $\theta \in [0, \pi]$ such that

Start of lecture 18

Hyperbolic Functions

(Hyperbolic sine and cosine)

Definition. $\cosh z = \frac{1}{2}(e^z + e^{-z})$, $\sinh z = \frac{1}{2}(e^z - e^{-z})$. Alternatively, $\cosh z = \cos(iz)$, $\sinh z = -i\sin(iz)$.

One can also prove that $(\cosh z)' = \sinh z$ and $(\sinh z)' = \cosh z$. (This is left as an exercise). We also have

$$\cosh^2 z - \sinh^2 z = 1$$

The rest of the trigonometric functions (tan, cot, sec, cosec) are defined in the usual way.

5 Integration

 $f:[a,b] \to \mathbb{R}$ bounded. (i.e. there exists K such that $|f(x)| \le K \forall x \in [a,b]$)

Definition. A dissection (or partition) \mathcal{D} of [a, b] is a finite subset of [a, b] containing the endpoints a and b. We write

$$\mathcal{D} = \{x_0, x_1, \dots, x_4\}$$

with $a = x_0 < x_1 < \cdots < x_{n-1} < x_{=}b$.

Definition. We define the upper sum and lower sum associated with \mathcal{D} by

$$S(f, \mathcal{D}) = \sum_{j=1}^{n} (x_j - x_{j-1}) \sup_{x \in [x_{j-1}, x_j]} f(x)$$
 (upper)

$$s(f, \mathcal{D}) = \sum_{j=1}^{n} (x_j - x_{j-1}) \inf_{x \in [x_{j-1}, x_j]} f(x)$$
 (lower)

Clearly $s(f, \mathcal{D}) \leq S(f, \mathcal{D})$ for all \mathcal{D} .

Lemma 5.1. If \mathcal{D} and \mathcal{D}' are dissections with $\mathcal{D}' \supseteq \mathcal{D}$, then $S(f, \mathcal{D}) \ge S(f, \mathcal{D}') \ge s(f, \mathcal{D}') \ge s(f, \mathcal{D})$

Proof.

$$S(f, \mathcal{D}') \ge s(f, \mathcal{D}')$$

is obvious. Suppose \mathcal{D}' contains an extra point than \mathcal{D} , let's say $y \in (x_{r-1}, x_r)$. Then clearly

$$\sup_{x \in [x_{r-1}, y]} f(x), \sup_{x \in [y, x_r]} \leq \sup_{x \in [x_{r-1}, x_r]} f(x)$$

$$\implies (x_r - x_{r-1}) \sup_{x \in [x_{r-1}, x_r]} f(x) \geq (y - x_{r-1}) \sup_{x \in [x_{r-1}, y]} f(x) + (x_r - y) \sup_{x \in [y, x_r]} f(x)$$

$$\implies S(f, \mathcal{D}) \geq S(f, \mathcal{D}')$$

The same for s and the same if \mathcal{D}' has more extra points than \mathcal{D} .

Lemma 5.2. $\mathcal{D}_1, \mathcal{D}_2$ two arbitrary dissections. Then

$$S(f, \mathcal{D}_1) \ge S(f, \mathcal{D}_1 \cup \mathcal{D}_2) \ge s(f, \mathcal{D}_1 \cup \mathcal{D}_2) \ge s(f, \mathcal{D}_2)$$

and in particular

 $S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2)$

Proof. Take $\mathcal{D}' = \mathcal{D}_1 \cup \mathcal{D}_2 \supseteq \mathcal{D}_1, \mathcal{D}_2$ in the previous lemma.

Definition. The *upper integral* of f is

$$I^*(f) = \inf_{\mathcal{D}} S(f, \mathcal{D})$$

(always exists!) The lower integral of f is

$$I_*(f) = \sup_{\mathcal{D}} s(f, \mathcal{D})$$

By Lemma 5.2,

$$I^*(f) \ge I_*(f)$$

because

$$S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2)$$
$$I^*(f) = \inf_{\mathcal{D}_1} S(f, \mathcal{D}_1) \ge s(f, \mathcal{D}_2)$$
$$I^*(f) \ge \sup_{\mathcal{D}_2} s(f, \mathcal{D}_2) = I_*(f)$$

Definition. A bounded function $f : [a, b] \to \mathbb{R}$ is said to be *Riemann integrable* (or just integrable) if

 $I^*(f) = I_*(f)$

and we set

$$\int_{a}^{b} f(x) dx = I^{*}(f) = I_{*}(f) = \int_{a}^{b} f(x) dx$$

Example.

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cap [0, 1] \\ 0 & x \notin \mathbb{Q} \cap [0, 1] \end{cases}$$

 $f:[0,1] \to \mathbb{R}; f$ is not Riemann integrable:

$$\sup_{x \in [x_{j-1}, x_j]} f(x) = 1, \qquad \inf_{x \in [x_{j-1}, x_j]} f(x) = 0$$

Hence $s(f, \mathcal{D}) = 1$ and $s(f, \mathcal{D}) = 0$ for all \mathcal{D} . Hence $I^*(f) = 1$, but $I_*(f) = 0$.

Start of lecture 19

Theorem 5.3. A bounded function $f : [a, b] \to \mathbb{R}$ is Riemann integrable if and only if given $\varepsilon > 0$, $\exists \mathcal{D}$ such that

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) < \varepsilon$$

Proof. For every dissection \mathcal{D} we have

$$0 \le I^*(f) - I_*(f) \le S(f, \mathcal{D}) - s(f, \mathcal{D})$$

If the given condition holds, then

$$0 \le I^*(f) - I_*(f) \le S(f, \mathcal{D}) - s(f, \mathcal{D}) < \varepsilon$$

for all $\varepsilon > 0$ hence $I^*(f) = I_*(f)$.

Conversely, if f is integrable, by definition of sup and inf there are partitions \mathcal{D}_1 and \mathcal{D}_2 such that

$$\int_{a}^{b} f - \frac{\varepsilon}{2} = I_{*}(f) + \frac{\varepsilon}{2} = \int_{a}^{b} f + \frac{\varepsilon}{2}$$

By Lemma 5.1 $(\mathcal{D}_1 \cup \mathcal{D}_2 \supseteq \mathcal{D}_1, \mathcal{D}_2)$

$$S(f, \mathcal{D}_1 \cup \mathcal{D}_2) - s(f, \mathcal{D}_1 \cup \mathcal{D}_2) \le S(f, \mathcal{D}_2) - s(f, \mathcal{D}_1)$$
$$< \int_a^b f + \frac{\varepsilon}{2} - \int_a^b f + \frac{\varepsilon}{2}$$
$$= \varepsilon$$

We now use this criterion to show that monotone and continuous functions are *integrable*.

Remark. Monotone and continuous functions are bounded (theorem 2.6 for the case of continuous functions).

Theorem 5.4. Let $f : [a, b] \to \mathbb{R}$ be monotone. Then f is integrable.

Proof. Suppose f is *increasing* (same proof for f decreasing). Then

$$\sup_{x \in [x_{j-1}, x_j]} f(x) = f(x_j)$$
$$\inf_{x \in [x_{j-1}, x_j]} f(x) = f(x_{j-1})$$

Thus

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) = \sum_{j=1}^{n} (x_j - x_{j-1}) [f(x_j) - f(x_{j-1})]$$

Now choose

$$\mathcal{D} = \left\{ a, a + \frac{b-a}{n}, a + \frac{2(b-a)}{n}, \dots, b \right\}$$
$$x_j = a + \frac{(b-a)j}{n} \qquad 0 \le j \le n$$
$$S(f, \mathcal{D}) - s(f, \mathcal{D}) = \frac{(b-a)}{n} (f(b) - f(a))$$

Take n large enough such that

$$\frac{(b-a)}{n}(f(b) - f(a)) < \varepsilon$$

and use Theorem 5.3.

Continuous Functions

First we need an auxiliary lemma.

Lemma 5.5. $f : [a, b] \to \mathbb{R}$ continuous. Then given $\varepsilon > 0$, $\exists \delta > 0$ such that if $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$ (uniform continuity). The point is that δ works $\forall x, y$ as long as $|x - y| < \delta$. (in the definition of continuity of f at, $\delta = f(x)$).

Proof. Suppose the claim is false. Then $\exists \varepsilon > 0$ such that $\forall \delta > 0$, we can find $x, y \in [a, b]$ such that $|x - y| < \delta$, but $|f(x) - f(y)| \ge \varepsilon$. Take $\delta = \frac{1}{n}$, to get $x_n, y_n \in [a, b]$ with $|x_n - y_n| < \frac{1}{n}$, but

$$|f(x_n) - f(y_n)| \ge \varepsilon$$

By Bolzano-Weierstrass, $\exists x_{n_k} \to c \in [a, b]$

$$|y_{n_k} - c| \le |y_{n_k} - x_{n_k}| + |x_{n_k} - c| \to 0$$

so $y_{n_k} \to c$. But

$$|f(x_{n_k} - f(y_{n_k}) \ge \varepsilon)|$$

Let $k \to \infty$, then by continuity of f

$$|f(c) - f(c)| \ge \varepsilon \implies 0 \ge \varepsilon$$

Absurd.

Theorem 5.6. Let
$$f : [a, b] \to \mathbb{R}$$
 continuous. Then f is Riemann integral.

Proof. By 5.5, given $\varepsilon > 0, \exists \delta > 0$ such that $|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$. Let

$$\mathcal{D} = \left\{ a + \frac{(b-a)j}{n} : 0 \le j \le n \right\}$$

Choose n large enough such that $\frac{b-a}{n} < \delta$. Then for $x, y \in [x_{j-1}, x_j]$

$$|f(x) - f(y)| < \varepsilon,$$

since

$$|x - y| \le |x_j - x_{j-1}| = \frac{b - a}{n} < \delta$$

Observe that

$$\max_{x \in [x_{j-1}, x_j]} f(x) - \min_{x \in [x_{j-1}, x_j]} f(x) = f(p_j) - f(q_j)$$

 $o_j,q_j \in [x_{j-1},x_j]$ (max and min are achieved due to continuity). Hence

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) = \sum_{j=1}^{n} (x_j - x_{j-1}) [f(p_j) - f(q_j)]$$

< $\varepsilon(b-a)$

Start of lecture 20

Remark. We have shown that monotone functions and continuous functions are Riemann integrable, but there do exist more complicated functions that are Riemann integrable.s

Example. $f : [0,1] \rightarrow \mathbb{R}$

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \in (0, 1] \text{ in its lowest form} \\ 0 & \text{otherwise} \end{cases}$$

Clearly $s(f, \mathcal{D}) = 0 \forall \mathcal{D}$. We'll show that given $\varepsilon > 0$, $\exists \mathcal{D}$ such that $S(f, \mathcal{D}) < \varepsilon$. This would imply that f is integrable with $\int_0^1 f = 0$. Consider the set

$$\left\{ x \in [0,1] : f(x) \ge \frac{1}{N} \right\} = \left\{ \frac{p}{q} : 1 \le q \le N, 1 \le p \le q \right\}$$

Take $N \in \mathbb{N}$ such that $\frac{1}{N} < \frac{\varepsilon}{2}$. This is a finite set

$$0 < t_1 < t_2 < \dots < t_R = 1$$

Consider a dissection \mathcal{D} of [a, b] such that

- (1) Each t_k , $1 \le k < R$ is some (x_{j-1}, x_j)
- (2) $\forall k$, the unique interval containing t_k has length at most $\frac{\varepsilon}{2R}$.

Note $f \leq 1$ everywhere so

$$S(f, \mathcal{D}) \le \frac{1}{N} + \frac{\varepsilon}{2} < \varepsilon$$

Elementary Properties of the Integral

Let f, g bounded and integrable on [a, b].

(1) If $f \leq g$ on [a, b] then

$$\int_{a}^{b} f \le \int_{a}^{b} g$$

(2) f + g is integrable on [a, b] and

$$\int_{a}^{b} f + g = \int_{a}^{b} f + \int_{a}^{b} g$$

(3) For any constant k, kf is integrable and

$$\int_{a}^{b} kf = k \int_{a}^{b} f$$

(4) |f| is integrable and

$$|\int_a^b f| \le \int_a^b |f|$$

(5) The product fg is integrable.

Proof.

(1) If $f \leq g$, then

$$\int_{a}^{b} f = I^{*}(f)$$

$$\leq S(f, \mathcal{D})$$

$$\leq S(g, \mathcal{D})$$

$$\implies \int_{a}^{b} f = I^{*}(f)$$

$$\leq I^{*}(g)$$

$$= \int_{a}^{b} g$$

(2)

$$\sup_{[x_{j-1},x_j]} (f+g) \leq \sup_{[x_{j-1},x_j]} f + \sup_{[x_{j-1},x_j]} g$$

$$\implies S(f+g,\mathcal{D}) \leq S(f,\mathcal{D}) + S(g,\mathcal{D})$$

Now take dissections \mathcal{D}_1 and \mathcal{D}_2

$$I^*(f+g) \le S(f+g, \mathcal{D}_1 \cup \mathcal{D}_2)$$

$$\le S(f, \mathcal{D}_1 \cup \mathcal{D}_2) + S(g, \mathcal{D}_1 \cup \mathcal{D}_2)$$

$$\le S(f, \mathcal{D}_1) + S(g, \mathcal{D}_2)$$

Fix \mathcal{D}_1 and take inf over \mathcal{D}_2 to get

$$I^*(f+g) \le S(f, \mathcal{D}_1) + I^*(g)$$

now take inf over all \mathcal{D}_1 to get

$$I^*(f+g) \le I^*(f) + I^*(g) = \int_a^b f + \int_a^b g$$

Similarly

$$\int_a^b f + \int_a^b g \le I_*(f+g)$$

so f + g is integrable with integral equal to the sum of integrals.

- (3) Exercise!
- (4) Consider

$$f_{+}(x) = \max(f(x), 0)$$
$$\sup_{[x_{j-1}, x_{j}]} f_{+} - \inf_{[x_{j-1}, x_{j}]} f_{+} \le \sup_{[x_{j-1}, x_{j}]} f - \inf_{[x_{j-1}, x_{j}]} f$$

We know that given $\varepsilon > 0$ there exists \mathcal{D} such that

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) < \varepsilon$$

(criterion from last time)

$$S(f, \mathcal{D}) - s(f, \mathcal{D}) = \sum_{j=1}^{n} (\sup_{[x_{j-1}, x_j]} f - \inf_{[x_{j-1}, x_j]} f)(x_j - x_{j-1})$$
$$\implies S(f_+, \mathcal{D}) - s(f_+, \mathcal{D}) \le S(f, \mathcal{D}) - s(f, \mathcal{D}) < \varepsilon$$
$$\implies f_+ \text{ is integrable}$$

But $|f| = 2f_+ - f$, so by (2) and (3), |f| is integrable. Since

 $-|f| \leq f \leq |f|$

property (1) gives

$$|\int_{a}^{b} f| \le \int_{a}^{b} |f|$$

(5) Take f integrable and ≥ 0 . Then

$$\sup_{\substack{[x_{j-1},x_j]}} f^2 = \left(\sup_{\substack{[x_{j-1},x_j]}} f\right)^2 = M_j^2$$
$$\inf_{\substack{[x_{j-1},x_j]}} f^2 = \left(\inf_{\substack{[x_{j-1},x_j]}} f\right)^2 = m_j^2$$

Thus

$$S(f^{2}, \mathcal{D}) - s(f^{2}, \mathcal{D}) = \sum_{j=1}^{n} (x_{j} - x_{j-1})(M_{J}^{2} - m_{j}^{2})$$
$$= \sum_{j=1}^{n} (x_{j} - x_{j-1})(M_{j} + m_{j})(M_{j} - m_{j}) \le 2K(S(f, \mathcal{D}) - s(f, \mathcal{D}))$$

 $(|f(X)| \leq K \forall x \in [a, b])$ Using the criterion in Theorem 5.3 we deduce that f^2 is integrable. Now take any f, then $|f| \leq 0$. Since $f^2 = |f|^2$ we deduce that f^2 is integrable for any f. Finally for fg note that

$$4fg = (f+g)^2 - (f-g)^2$$

hence fg is integrable given what we proved before.

Start of

lecture 21 Here is another property of Riemann integrals:

(6) f is integrable on [a, b]. If a < c < b, then f is integrable over [a, c] and [c, b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Conversely, if f is integrable over [a, c] and [c, b], then f is integrable over [a, b] and

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

Proof of (6). We first make two observations:

• If \mathcal{D}_1 is a dissection of [a, c] and \mathcal{D}_2 is a dissection of [c, b], then $\mathcal{D} = \mathcal{D}_1 \cup \mathcal{D}_2$ is a dissection of [a, b] and

$$S(f, \mathcal{D}_1 \cup \mathcal{D}_2) = S(f_{[a,c]}, \mathcal{D}_1) + S(f_{[c,b]}, \mathcal{D}_2$$

$$(*_1)$$

• Also if \mathcal{D} is a dissection of [a, b], then

$$S(f, \mathcal{D}) \ge S(f, \mathcal{D} \cup \{c\})$$

= $S(f_{[a,c]}, \mathcal{D}_1) + S(f_{[c,b]}, \mathcal{D}_2)$ (*2)

where \mathcal{D}_1 dissects [a, c] and \mathcal{D}_2 dissects [c, b].

Then $(*_1)$ gives

$$I^*(f) \le I^*(f_{[a,c]}) + I^*(f_{[c,b]})$$

and $(*_2)$ gives

$$I^*(f) \ge I^*(f_{[a,c]}) + I^*(f_{[c,b]})$$

$$\implies I^*(f) = I^*(f_{[a,c]}) + I^*(f_{[c,b]})$$

Similarly

$$I_*(f) = I_*(f_{[a,c]} + I_*(f_{[c,b]}))$$

Thus

$$0 \le I^*(F) - I_*(f)$$

= $[I^*(f_{[a,c]}) - I_*(f_{[a,c]})] + [I^*(f_{[c,b]}) - I_*(f_{[c,b]})]$

From this (6) follows right away.

Notation. It is a convention that if a > b, then

$$\int_{a}^{b} f = -\int_{b}^{a} f$$

and if a = b we agree that its value is zero. With this convention if $|f| \leq K$, then

$$\left| \int_{a}^{b} f \right| \le K |b - a|$$

Fundamental Theorem of Calculus (FTC)

 $f:[a,b] \rightarrow \mathbb{R}$ bounded and integrable. Write:

$$F(x) = \int_{a}^{x} f(t) \mathrm{d}t$$

 $x \in [a, b].$

Theorem 5.7. F is continuous.

Proof.

 \mathbf{SO}

$$F(x+h) - F(x) = \int_{x}^{x+h} f(t) dt$$

$$|F(x+h) - F(x)| = \left| \int_{x}^{x+h} f(t) dt \right| \le K|h|$$

if $|f| \leq K \; \forall \; t \in [a,b].$ Now let $h \to 0$ and we're done.

Theorem 5.8 (FTC). If in addition f is continuous at x, then F is differentiable at x and

$$F'(x) = f(x).$$

Proof. We need to consider

$$\left|\frac{F(x+h) - F(x)}{h} - f(x)\right|$$

(for $x + h \in [a, b]$ and $h \neq 0$).

$$\left|\frac{F(x+h) - F(x)}{h} - f(x)\right| = \frac{1}{|h|} \left| \int_{x}^{x+h} f(t) dt - hf(x) \right|$$
$$= \frac{1}{|h|} \left| \int_{x}^{x+h} [f(t) - f(x)] dt \right|$$

f is continuous at x, means that given $\varepsilon>0,$ $\exists~\delta>0$ such that if $|t-x|<\delta$ then

$$|f(t) - f(x)| < \varepsilon$$

If $|h| < \delta$, we can write

$$\leq \frac{1}{|h|}\varepsilon|h| = \varepsilon$$

This means

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x)$$

г	-	-	٦	
L				
L				
L	_	_	_	

÷			1
			I
			I
			I

Corollary 5.9 (integration is the inverse of differentiation). If f = g' is continuous on [a, b], then

$$\int_{a}^{x} f(t) dt = g(x) - g(a) \qquad \forall \ x \in [a, b]$$

Proof. From Theorem 5.8 F - g has zero derivative in [a, b]. Hence F - g is constant and since F(a) = 0 this implies that F(x) = g(x) - g(a).

Every continuous has an *indefinite integral* or anti-derivative written $\int f(x) dx$ which is determined up to a constant.

Remark. We have solved the ODE:

$$\begin{cases} y'(x) = f(x) \\ y(a) = y_0 \end{cases}$$

Start of lecture 22

Corollary 5.10 (integration by parts). Suppose f' and g' exist and are continuous on [a, b]. Then

$$\int_a^b f'g = f(b)g(b) - f(a)g(a) - \int_a^b fg'$$

Proof. By the product rule

$$(fg)' = f'g + fg'$$

By 5.9

$$f(b)g(b) - f(a)g(a) = \int_a^b f'g + \int_a^b fg'$$

Corollary 5.11 (integration by substitution). Let $g : [\alpha, \beta] \to [a, b]$ with $g(\alpha) = a$, $g(\beta) = b$ and g' exists and is continuous on $[\alpha, \beta]$. Let $f : [a, b] \to \mathbb{R}$ be continuous. Then

$$\int_{a}^{b} f(x) \mathrm{d}x = \int_{\alpha}^{\beta} f(g(t))g'(t) \mathrm{d}t$$

Proof. Set $F(x) = \int_a^x f(t) dt$ as before. Let h(t) = F(g(t)) (defined since g takes values

in [a, b]). Then

$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt = \int_{\alpha}^{\beta} F'(g(t))g'(t)dt \qquad (FTC)$$
$$= \int_{\alpha}^{\beta} h'(t)dt \qquad (Chain rule)$$
$$= h(\beta) - h(\alpha)$$
$$= F(b) - F(a)$$
$$= \int_{a}^{b} f(x)dx$$

Theorem 5.12 (Taylor's Theorem with remainder an integral). Let $f^{(n)}(x)$ be continuous for $x \in [0, h]$. Then

$$f(h) = f(0) + \dots + \frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} + R_n$$

where

$$R_n = \frac{h^n}{(n-1)!} \int_0^1 (1-t)^{n-1} f^{(n)}(th) dt$$

Proof. Substitution u = th.

$$R_n = \frac{1}{(n-1)!} \int_0^h (h-u)^{n-1} f^{(n)}(u) \mathrm{d}u$$

Integrating by parts now, we get:

$$R_n = -\frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} + \underbrace{\frac{1}{(n-2)!}\int_0^h (h-u)^{n-2}f^{(n-1)}(u)\mathrm{d}u}_{R_{n-1}}$$

If we integrate by parts n-1 times we arrive at:

$$R_n = -\frac{h^{n-1}f^{(n-1)}(0)}{(n-1)!} - \dots - hf'(0) + \underbrace{\int_0^h f'(u)du}_{f(h) - f(0)}$$

Now we can get the Cauchy & Lagrange form of the remainder. However note that the proof above uses continuity of $f^{(n)}$ not just mere existence as in section 3. But first we need to prove:

Theorem 5.13. $f,g:[a,b] \to \mathbb{R}$ continuous with $g(x) \neq 0 \ \forall x \in (a,b)$. Then $\exists c \in (a,b)$ such that

$$\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$$

Proof. We're going to use Cauchy's MVT (Theorem 3.7).

$$F(x) = \int_{a}^{x} fg, \qquad G(x) = \int_{a}^{x} gg$$

Theorem 3.7 implies $\exists c \in (a, b)$ such that

$$(F(b) - F(a))G'(c) = F'(c)(G(b) - G(a))$$
$$\left(\int_a^b fg\right)g(c) = f(c)g(c)\int_a^b g$$
Since $g(c) \neq 0$ we simplify and we're done.

Now we want to apply this to

$$R_n = \frac{h^n}{(n-1)!} \int_0^1 (1-t)^{n-1} f^{(n)}(th) dt$$

First we use Theorem 5.13 with $g \equiv 1$, to get

$$R_n \frac{h^n}{(n-1)!} (1-\theta)^{n-1} f^{(n)}(\theta h)$$

 $(\theta \in (0, 1))$, which is Cauchy's form of remainder!

To get Lagrange, we use Theorem 5.13 with $g(t) = (1-t)^{n-1}$ which is > 0 for $t \in (0, 1)$. Therefore $\exists \ \theta \in (0, 1)$ such that

$$R_n = \frac{h^n}{(n-1)!} f^{(n)}(\theta h) \left[\int_0^1 (1-t)^{n-1} dt \right]$$

and

Start of lecture 23

$$\int_{0}^{1} (1-t)^{n-1} dt = -\frac{(1-t)^{n}}{n} \Big|_{0}^{1} = \frac{1}{n}$$
$$\implies R_{n} = \frac{h^{n}}{n!} f^{(n)}(\theta h), \qquad \theta \in (0,1)$$

which is Lagrange's form of the remainder!

5.1 Improper Integrals (infinite integrals)

Definition. Suppose $f : [a, \infty) \to \mathbb{R}$ integrable (and bounded) on every interval [a, R] and that as $R \to \infty$

$$\int_{a}^{R} f(x) \mathrm{d}x \to l$$

Then we say that $\int_a^{\infty} f(x) dx$ exists or converges and that its value is l. If $\int_a^R f(x) dx$ does not tend to a limit, we say that $\int_a^{\infty} f(x) dx$ diverges. A similar definition applies to $\int_{-\infty}^a f(x) dx$. If

$$\int_{a}^{\infty} f = l_1$$
 and $\int_{-\infty}^{a} f = l_2$

we write

$$\int_{-\infty}^{\infty} f = l_1 + l_2$$

(independent of the particular value of a).

Note. This last bit is *not* the same as saying that

$$\lim_{R \to \infty} \int_{-R}^{R} f(x) \mathrm{d}x$$

exists. It is stronger: for example

$$\int_{-R}^{R} x \mathrm{d}x = 0$$

Example. $\int_1^\infty \frac{\mathrm{d}x}{x^k}$ converges if and only if k > 1. Indeed, if $k \neq 1$ then

$$\int_{1}^{R} \frac{\mathrm{d}x}{x^{k}} = \left. \frac{x^{1-k}}{1-k} \right|_{1}^{R} = \frac{R^{1-k}-1}{1-k}$$

and as $R \to \infty$ this limit is finite if and only if k > 1. If k = 1,

$$\int_{1}^{R} \frac{\mathrm{d}x}{x} = \log R \to \infty$$

Remarks

(1) $\frac{1}{\sqrt{x}}$ continuous on $[\delta, 1]$ for any $\delta > 0$, and

$$\int_{\delta}^{1} \frac{1}{\sqrt{x}} \mathrm{d}x = 2\sqrt{x} \big|_{\delta}^{1} = 2 - 2\sqrt{\delta} \to 2$$

as $\delta \to 0$.

 $\frac{1}{\sqrt{x}}$ is unbounded on (0, 1].

$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}} = \lim_{\delta \to 0} \int_{\delta}^1 \frac{\mathrm{d}x}{\sqrt{x}} = 2$$

Exercise: give a general definition for cases like this.

$$\int_0^1 \frac{\mathrm{d}x}{x} = \lim_{\delta \to 0} \int_{\delta}^1 \frac{\mathrm{d}x}{x}$$
$$= \lim_{\delta \to 0} \left(\log x |_{\delta}^1 \right)$$
$$= \lim_{\delta \to 0} (\log 1 - \log \delta)$$

does not exist.

(2) If $f \ge 0$ and $g \ge 0$, for $x \ge a$ and

$$f(x) \le Kg(x) \qquad \forall \ x \ge a$$

with K a constant, then

$$\int_{a}^{\infty} g \text{ converges } \Longrightarrow \int_{a}^{\infty} f \text{ converges}$$

and

$$\int_{a}^{\infty} f \le K \int_{a}^{\infty} g$$

Just note that

$$\int_{a}^{R} f \le K \int_{a}^{R} g$$

The function $R \to \int_a^R f$ is increasing $(f \ge 0)$ and bounded above (since $\int_a^\infty g$ converges). Take $l = \sup_{R \ge a} \int_a^R f < \infty$, and check that

$$\lim_{R \to \infty} \int_{a}^{R} f = l.$$

Given $\varepsilon > 0, \exists R_0$ such that

$$\int_a^{R_0} f \ge l - \varepsilon$$

Thus if $R \geq R_0$,

$$\int_{a}^{R} f \ge \int_{a}^{R_{0}} \ge l - \varepsilon$$
$$\implies 0 \le l - \int_{a}^{R} f \le \varepsilon$$

Example. $\int_0^\infty e^{-\frac{x^2}{2}} dx$. Note $e^{-\frac{x^2}{2}} \le e^{-\frac{x}{2}}$ for $x \ge 1$. Note that $\int_1^R e^{-\frac{x}{2}} dx = \frac{1}{2} [e^{-\frac{1}{2}} - e^{-\frac{R}{2}}] \to \frac{e^{-\frac{1}{2}}}{2}$ hence $\int_0^\infty e^{-\frac{x^2}{2}}$ converges.

(3) We know that if $\sum a_n$ converges, then $a_n \to 0$. $\int_a^{\infty} f$ converges may *not* imply that $f \to 0$.

5.2 The Integral Test

Theorem 5.14 (integral test). Let f(x) be a positive *decreasing* function for $x \ge 1$. Then

- (1) The integral $\int_1^{\infty} f(x) dx$ and the series $\sum_{1}^{\infty} f(n)$ both converge or diverge.
- (2) As $n \to \infty$,

$$\sum_{r=1}^{n} f(r) - \int_{1}^{n} f(X) \mathrm{d}x$$

tends to a limit l such that $0 \le l \le f(1)$.

Note. f decreasing $\implies f$ integrable on every bounded subinterval by Theorem 5.4.

Proof. If $n-1 \leq x \leq n$, then

$$f(n-1) \ge f(x) \ge f(n)$$

hence

$$f(n-1) \ge \int_{n-1}^{n} f(x) \mathrm{d}x \ge f(n) \tag{(*)}$$

Adding

$$\sum_{1}^{n-1} f(r) \ge \int_{1}^{n} f(x) dx \ge \sum_{2}^{n} f(r)$$
 (**)

From this claim (1) is *clear*. For the proof of (2) set

$$\phi(n) = \sum_{1}^{n} f(r) - \int_{1}^{n} f(x) \mathrm{d}x$$

Then

$$\phi(n) - \phi(n-1) = f(n) - \int_{n-1}^{n} f(x) dx \le 0$$

(using (*)) From (**)

$$0 \le \phi(n) \le f(1)$$

Thus $\phi(n)$ is decreasing and tends to a limit l such that

$$0 \le l \le f(1).$$

Start of lecture 24

Examples

(1) $\sum_{1}^{\infty} \frac{1}{n^k}$ converges if and only if k > 1 (*). We saw that $\int_{1}^{\infty} \frac{1}{x^k}$ converges if and only if k > 1, so from the integral test we get (*).

(2)
$$\sum_{2}^{\infty} \frac{1}{n \log n}, f(x) = \frac{1}{x \log x}, x \ge 2.$$

$$\int_{2}^{R} \frac{\mathrm{d}x}{x \log x} = \log(\log x)|_{2}^{R} = \log(\log R) - \log(\log 2) \to \infty$$

as $R \to \infty$. Integral test implies

$$\sum_{n=2}^{\infty} \frac{1}{n \log n}$$

diverges.

Corollary 5.15 (Euler's constant). As $n \to \infty$, $1 + \frac{1}{2} + \dots + \frac{1}{n} - \log n \to \gamma$ with $0 \le \gamma \le 1$.

Proof. Set $f(x) = \frac{1}{x}$ and use Theorem 5.14.

Note. An open problem asks "Is γ irrational? $(\gamma \approx 0.577)$ "

We have seen: monotone functions and continuous functions are Riemann integrable. We can generalize this a bit and say that *piece-wise continuous* functions are integrable.

Definition. A function $f : [a, b] \to \mathbb{R}$ is said to be piece-wise continuous if there is a dissection

 $\mathcal{D} = \{a = x_0, x_1, \dots, x_n = b\}$

such that

- (1) f is continuous on $(x_{j-1}, x_j) \forall j$
- (2) The one-sided limits

 $\lim_{x \to x_{j-1}^+} f(x), \qquad \lim_{x \to x_{j-1}^-} f(x)$

exist.

It is now an *exercise* to check that f is Riemann integrable: just check that $f|_{[x_{j-1},x_j]}$ is integrable for each j. (the values of f and the endpoints won't really matter) and use additivity of domain (property (6)).

Question: How large can the discontinuity set of f be while f is still Riemann integrable?

Recall the example:

$$f(x) = \begin{cases} \frac{1}{q} & x = \frac{p}{q} \\ 0 & \text{otherwise} \end{cases}$$

on [0, 1].

Note. What follows is non-examinable.

Answer: Henri Lebesgue characterization of Riemann integrability: $f : [a, b] \to \mathbb{R}$ bounded. Then f is Riemann integrable if and only if the set of discontinuity points has *measure zero*.

Definition. Let l(I) be the length of an interval I. A subset $A \subset \mathbb{R}$ is said to have measure zero if for each $\varepsilon > 0$, \exists a countable collection of intervals I_j such that

$$A \subset \bigcup_{j=1}^{\infty} I_j$$

and

$$\sum_{j} l(I_j) < \varepsilon$$

Lemma. (1) Every countable set has measure zero.

(2) If B has measure zero and $A \subset B$, then A has measure zero.

(3) If A_k has measure zero $\forall k \in \mathbb{N}$, then $\bigcup_{k \in \mathbb{N}} A_k$ also has measure zero.

Oscillation of f

 ${\cal I}$ interval:

$$\omega_f(I) = \sup_I f - \inf_I f$$

oscillation of f at a point:

$$\omega_f(x) = \lim_{\varepsilon \to 0} \omega_f(x - \varepsilon, x + \varepsilon)$$

Lemma. f is continuous at x if and only if $\omega_f(x) = 0$.

Proof. Exercise.

Brief Sketch of Lebesgue's criteria

$$D = \{x \in [a, b] : f \text{ discontinuous at } x\} = \{x : \omega_f(x) > 0\}$$
$$N(\alpha) = \{x : \omega_f(x) \ge \alpha\}$$
$$D = \bigcup_{1}^{\infty} N\left(\frac{1}{k}\right)$$

Required to prove: D has measure zero. Let $\varepsilon > 0$ be given, $\exists \mathcal{D}$ such that

$$\sum_{j=1}^{n} \omega_f([x_{j-1}, x_j])(x_j - x_{j-1})S(f, \mathcal{D}) - s(f, \mathcal{D}) < \frac{\varepsilon \alpha}{2}$$
$$F = \{j : (x_{j-1}, x_j) \cap N(\alpha) \neq \emptyset\}$$

then for each $j \in F$,

$$\omega_f([x_{j-1}, x_j]) \ge \alpha$$

$$\implies \alpha \sum_{j \in F} (x_j - x_{j-1}) \le \sum_{j \in F} \omega_f([x_{j-1}, x_j])(x_j - x_{j-1}) < \frac{\varepsilon \alpha}{2}$$

$$\implies \sum_{j \in F} (x_j - x_{j-1}) < \frac{\varepsilon}{2}$$

These cover $N(\alpha)$ except perhaps for $\{x_0, x_1, \ldots, x_n\}$. But these can be covered by intervals of total length $< \frac{\varepsilon}{2}$ hence $N(\alpha)$ can be covered by total length $< \varepsilon$.

For the other direction, let $\varepsilon > 0$ be given. $N(\varepsilon) \subset D$, so $N(\varepsilon)$ has measure zero. $N(\varepsilon)$ is closed and bounded hence it can be covered by finitely many open intervals of total length $< \varepsilon$.

$$N(\varepsilon) = \bigcup_{i=1}^{m} U_i$$
$$K = [a, b] \setminus \bigcup_{i=1}^{m} U_i$$

compact so it can be covered by finitely many intervals J_j such that

 $\omega_f(J_j) < \varepsilon.$