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1 Limits and Convergence [b]

Review from Numbers and Sets: sequences ay, (an)5, an, € R.

Definition. We say that a,, = a asn — oo if given € > 0, 3 N such that |a,—a| < ¢
for all n > N. Note N = N(e).

Definition (Monotonic sequence). A sequence is increasing if a, < ap41 for all n.
Similarly, a sequence is decreasing if a, > an41 for all n. The sequence is strictly
increasing / decreasing if equality never occurs. A sequence is monotonic if it is

either increasing or decreasing.

Axiom (Fundamental Axiom of the Real Numbers). Given an increasing sequence
(an)p2, and some A € R such that a, < A for all n, there exists a € R such
that a, — a as n — oo0. So an increasing sequence of real numbers bounded
above converges. Equivalently a decreasing sequence of real numbers bounded below
converges. Equivalent also to: “Every non-empty of real numbers bounded above
has a supremum”. (LUBA = Least Upper Bound Axiom).

Definition (supremum). Given S C R, S # ) we say that sup S = K if
i) z<KVzeS

(ii) given € > 0, 3z € S such that z > K —e.

[ Note. Supremum is unique. We also can define a similar notion of infimum. }

J




Lemma 1.1. (i) The limit is unique. That is, if a,, — a and a,, — b, then a = b.

(ii)) If a, - a as n — oo and ny < ng < mng < -, then ap; = a as j = oo
(subsequences converge to the same limit).

(iii) If ay, = ¢ V¥ n, then a,, — ¢ as n — occ.
(iv) If a,, — a and b, — b, then a,, + b, — a + .
(v) If ay, — a and b, — b, then a,b, — ab.
(vi) If a, — a, ap # 0 Vn and a # 0, then é—)%
)

(vii) If @, < A Vn and a,, — a, then a < A.

Proof. We only do (i), (ii) and (v) and leave the others as exercise.

(i) given € > 0, Ing such that |a, — a] < € V n > ng, and Ing such that |a, — b <
eV n>ny. Then let N = max{nj,ns}. Then if n > N,

la —b| < lan, —a| + |a, — b| < 2e.

If a # b, take ¢ = Lgl", then by triangle inequality

2
la —b| < gla—b\
which is a contradiction if a # b, hence a = b.

ii) given € > 0, AN such that |a, —a|] < &, ¥V n > N since n; > j by induction, we
g j J by
have |a,; —a| <eV j> N,ie. a,, — aasj— oo.

(V) |anby, — ab| < |apby, — anb| + |anb — ab| = |an||bn, — b + |bl|an, — a|. Since a,, — a,
given € > 0, Iny such that |a, — a| < € Vn > nq, and similarly since b, — b Jno
such that |b, —b| < eV n>ng. If n>ni(1), |a, —al <1, so |a,| < |a| +1. Hence

lanb, — ab] < €(la] + 1+ |b])

for all n > n3(e) = max{ni(1),n1(e),n2(e)}.

Lemma 1.2. % — 0 as n — co.

Proof. % is a decreasing sequence bounded by below, so by the Fundamental Axiom it
has a limit a. We claim that a = 0. Note that
1 1

a

1
=-X=— =
2n 2 n 2
by Lemma 1.1(v). But % is a subsequence, so by Lemma 1.1(ii), % — a. By uniqueness
a

of limits (Lemma 1.1(i)), we have a = § = a = 0. O
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[ Remark. The definition of limit of a sequence makes perfect sense for a,, € C. }

‘ Definition. a, — a if given € > 0, IN such that Vn > N, |a, —a| < ¢. W

The first six parts of Lemma 1.1 are the same over C. The last one does not make sense
(over C) since it uses the order of R.

The Bolzano-Weierstrass Theorem

Theorem 1.3. If z,, € R and there exists K such that |z,| < K V n, then we can
find ng <ngo <ng < --- andxeRsuchthata;nj — x as j — o0.

In other words every bounded sequence has a convergent subsequence.

Remark. We say nothing about uniqueness of z, for example z,, = (—1)", then
Ton+1 — —1 and Top — 1.

Proof. Set [a1,b1] = [~ K, K]. Let ¢, = %2 for all n. Consider the following possibili-
ties:

1) x € [a1, ¢1] for infinitely many values of n.

1) and (2) could hold at the same time. But if (1) holds, we set as = ay and by = ¢1. If
1) fails, we have that (2) must hold and we set aa = ¢1 and by = b;. Proceed inductively
o construct sequences an, b, such that x,, € [ay,, b,| for infinitely many values of m.

)

2) m, € [c1,b1] for infinitely many values of n.
)
)

(
(
(
(
¢

On-1 < ap < by < by

bp—1 — an-1

7 *)
(bisection method). Note that a, is an increasing sequence and bounded, and b, is a
decreasing sequence and bounded, so by the Fundamental Axiom, a,, — a € [a1, b1] and
by, — b € [a1,b1]. Using (%),

by, — an =

b—a
b—a=—— = a=0.
2
Since z, € [an, by for infinitely many values of m, having chosen n; such that Tn,; €
laj, bj], there is njy1 > nj such that x,,,, € [a;41,b;41] (I have an “unlimited supply”!)
Since a; < xy,; < bj, we have z,,; — a. O



Cauchy Sequences

Definition (Cauchy Sequence). a, € R is called a Cauchy sequence if given £ > 0,
3 N > 0 such that |a, — am| <e V¥V n,m < N. (Note: N = N(e).)

Lemma 1.4. A convergent sequence is a Cauchy sequence.

Proof. If a,, — a, given € > 0, 3 N such that Vn > N, |a, — a|] < . Take m,n > N,
then
@y — am| < |an — a| + |am — a| < 2e.

Theorem 1.5. Every Cauchy sequence is convergent.

Proof. First we note that if a, is Cauchy, then it is bounded. Take e =1, N = N(1) in
the Cauchy property, then

lan —am| <1, Vn,m>N(1)

lam| < lam —an|+lan| <1+ |an| ¥V m > N.
Let K = max{l + |an]|,|an|,n = 1,2,...,N — 1}. Then |a,| < K ¥ n. So by the

Bolzano-Weierstrass theorem, An;—a-

Claim: a, — a.
We now prove the claim: given € > 0, 3 jg such that V j > j

lan; —a| <e.

Also, 3 N(e) such that |a;,—ay| < eV m,n > N(e). Take j such that n; > max{N(e),nj, }.
Then if n > N(e)
lan — a| < lan — an;| + |an; — a| < 2e.
—_—— ——

<e <e
Summary: in R a sequence is convergent is and only if it is Cauchy.
“old fashioned name”: the “general principle of convergence”.

Useful property: since we do not need to know what the limit is.

Series
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<
Definition. a, € R,C. We say that Z;; a; converges to S if the sequence of
partial sums

N
SN:ZCL]'*)S

J=1

i aj = S.
=1

If Sy does not converge, we say that Zjo’;l a; diverges.

as N — oo. We write

-

&

N
Remark. Nay problem in series is really a problem about the sequence of partial

sums.

Lemma 1.6. (i) If 3272, a; and } 22, b; converge, then so does

> " (Aaj + pbj)

oo
j=1
where A\, € C.

(ii) Suppose 3 N such that a; = b; V j > N then either 3 72, a; and 222, b; both
converge or they both diverge (initial terms do not matter).

Proof.

(i) Exercise

(ii) For n > N,

n N-1 n
A=Y bj=Y bi+ > b
Jj=1 J=1 Jj=N
N-1 N-1
= s, —d, = Z a; — Z bj = constant
j=1 j=1

So s, converges if and only if d,, does.



Example (Geometric Series). z € R, set a, = 2"~ ! for n > 1. Now

n
sn=Y aj=1+z+a’+ - 42"
j=1

Then

B 1;”; for z #£ 1
Sp =
n forz =1
x$p=x+ 2>+ +2"=s,— 1+ 2"
spn(l—xz)=1-—2"
if[w\<1,x"—>0andsn—>ﬁ. Ifz>1, 2" — oo and s, — 00. (Note s, — oo if
given A, there exists N such that s, > A such that s,, > AV n> N, and s,, & —©

if given A there exists N such that s, < —A for all n > N.) If x < —1 then s,, does
not converge (oscillates). If x = —1 then

1 n odd
Sp =
0 n even

Thus the geometric series converges if and only if |z| < 1.

To see for example that 2" — 0 if |z| < 1, consider first the case 0 < x < 1. Write
1=1+46,0>0. S

xT

1 <
(I+d6)" ~ 1+dn

because (1 + )" > 1+ nd from binomial expansion. An easy observation from this is
that:

n

= — 0.

Lemma 1.7. If Z;; ap converges, then lim; , a; = 0.

Proof.
n
Sp = Z aj
j=1
Then
Ap = Sp — Sp—1-
If s,, — a, then a,, — 0 (since s,_1 — a as well). ]



( N
Remark. The converse of lemma 1.7 is false! For example, % 1 diverges (har-

j=17
n
1
=31
=17

monic series).

T OIS S

S S — — DY — S —

2n " n+l n+2 n—+n "2
since %‘Fk‘ > % for Kk = 1,2,...,n. So if s, — a, then s9, — a also, and thus
a>a+i X

L )

Series of Non-negative Terms

an > 0. Basic result:

Theorem 1.8 (The comparison test) Suppose that 0 < b, < a, V n. Then if
> ;=1 a; converges, then so does 372 b;.

Proof. Let s, = Z;Vﬂ aj and let dy = Zjv 1 bj. Since b, < a, we have that dy < sy.

But sy — 5,50 dy < sy < sV N. Also, dy is an increasing sequence bounded above,

hence dy converges. O
Example.
o
>
— 12
7j=1
1 1 1 1
— = — — = Q.
n?2 “nn-1 n-1 n "
n>2
So
i =1 1—|—1 l—i- o oF ! 1—1 1—>1
j_za"_ 27273 N-1 N N
So by comparison, Z 2 converges. In fact we get that

=1
Zn—g 1=2.
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Theorem 1.9 (Root test / Cauchy’s test for convergence). Assume a, > 0 and
a,ln/n — a asn — oco. Then if a < 1, )" a, converges; if a > 1, > a,, diverges.

- N
Remark. Nothing can be said if a = 1 (examples coming up).

- J

Proof. If a < 1, choose a < r < 1. By definition of limit and hypothesis, there exists N
such that for all n > N,
a}/"<r = q, <r"

But since r < 1, the geometric series Y | 7" converges, so by theorem 1.8, > a,, converges.

If @ > 1, then for n > N, then ai/n >1 = a, > 1, thus }_ a, diverges (since a,, does
not tend to zero). O

Theorem 1.10 (Ratio test / D’Alembert’s test). Suppose a, > 0 and CLZ—:l — 0. If
(<1, a, converges. If £ > 1, " a,, converges.

( N
Note. As before, nothing can be said for £ = 1.
N\ J

Proof. Suppose ¢ < 1 and choose r with ¢ < r < 1. Then there exists N such that for

alln > N,
an+1

<r
(7%
Therefore o a a
-1 N+1 _
ap = — L 2Ny < ayr™N
ap—1 Gp—2 anN

= a, < Kr"

with K independent of n. Since > r™ converges, so does »_ a,, by theorem 1.8. If £ > 1,
choose 1 < r < /£, then ag—zl > r for all n > N, and as before

ap Ap—1 aAN+1 N

Gn—1 Gn—2 an

an > anr"”

ap = > aN

s0 > ay diverges. O

Examples

e 5% L. Then
=1 27
ant+1 m+1 2" n41 1
fr - — = —_— — 1_
an, ontl  pn 2n 2 <

So we have convergence by ratio test.




o Z;;% diverges, and 7%, 5 converges. Note ratio test gives limit 1 in both

cases, so inconclusive if limit is 1. Since n'/™ — 1 as n — 0o, the root test is also

inconclusive when limit is 1. To see this limit, write
nl/”:1+5n, on > 0.

—1
n=(1+6,)"> n(n2)5i

(binomial expansion)

2
— c572l<—1 — 5, =0

n
o0 nt1 :
°* > =1 [ 3 +5} converges by root test since

ntl —>1 <1
3n+5 3 '

Another useful test:

Theorem 1.11 (Cauchy’s Condensation Test). Let a, be a decreasing sequence of
positive terms. Then » 22, a, converges if and only if

[e%9)
E 2"a2n
j=1

converges.

Proof. First we observe that if a,, is decreasing, then
agr < a—2"1pi<aga, 1<i<2k!

(for any k > 1.) Assume now that 32, a; converges with sum A. Then

271
-1
2" agn < agn-141 +agn-149+ -+ agn = E -

m=2n—1
Thus
N N om N
g 2" g < g A = g Qo -
n=1 n=1m=2n—-141 m=2

N 2N
— ZQ"agn <2 Z am < 2(A—ay)
n=1 m=2

10



Thus Zﬁf:l 2"agn being increasing and bounded above, converges. Conversely, assume
that 3772, 27ay; converges. Then

2n 2n
E A < g agn-1 = 2" Lagn1.
m=2n—141 m=2n—141
2N N N
o g U, = g g am < g 2" Lgon1 < B.
m=2 n=1m=2n—-141 n=1
So Z%:l am is a bounded increasing sequence and thus it converges. O

Examples / Applications

Claim. 72, L converges if and only if k > 1.

nk

Proof. Note that it is a decreasing sequence of positive terms.

11 n ’“<1
(n+ 1)k = nk’ n+1

Now:

27L
21—k

k
2na2n — 9n |:1:| _ 2n—nk _ (21—k)n

so it is a geometric series with ratio , and it converges if and only if 2! 7% < 1, so if
and only if k£ > 1. O

Alternating Series

Theorem 1.12 (Alternating Series Test). If a, decreases and tends to zero as
n — 0o, then the series Z;’;l(—l)"ﬂan converges.

(=t

Example. > >

el converges.

Proof. Let s, = a1 —ag + -+ -+ (—1)"*a,. Note

Son = (a1 — az) + (a3 — as) + - - - + (agn—1 — a2n) > S2p—2
—_—

>0

Sop = a1 — (ag —az) — (ag —as) — -+ — (agn—2 — A2p—1) — a2p, < a1

11
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So say, is increasing and bounded above, so s2, — s. Also note sop+1 = Sop + G2n+1 —
s + 0 = s. This implies that s, converges to s:

Given € > 0, there exists N7 such that for all n > N, |s9, — s| < € and there exists Ny
such that for all n > Na, |sop41 — s| < e. Take N = 2max{Nj, No} + 1. Then if £ > N,
we have [sp — s| < €, s0 s — s. O

Absolute Convergence

Definition. Take a, € C. If Y ° |a,| is convergent, then the series is called
absolutely convergent.

s N
Note. Since |ay| > 0, we can use the previous tests to check absolute convergence.

This is particularly useful for a,, € C.
- J

Theorem 1.13. If )" a, is absolutely convergent, then it is convergent.

Proof. Suppose first a, € R. Let

a, ifa, >0
UN =
0 ifa,<0

0 ifa, >0
Wy, =
—a, ifa,<0

v, = ’an|+an W, — ‘an’_an
2 " 2
Clearly, vy, w, > 0. Note a, = v, — wy, and |a,| = vy, + Wy > Vp,wy. So if > |ay]
converges, by comparison » vy, Y wy, also converge, hence > a, converges. If a, € C,
then a, = x, + 1yn. Now |zy], |yn| < |an|, so > z, and Y y, are absolutely convergent,
hence >z, and )y, converge. Since a, = x, + iy, we have that »_ a, converges as
well. O

Examples
(1) > % converges but is not absolutely convergent.

(2) S°0°, Z5 for z € C, then if |2| < 2 we have absolute convergence. If |z| > 2,
so a, does not tend to 0, hence the series diverges.

" >1

Y

z
2

12
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Definition. If ) a, converges, but ) |a,| does not, it is said sometimes, that  a,
is conditionally convergent.

“conditional”: because the sum to which the series converge is conditional on the order
in which elements of the sequence are taken. If rearranged, the sum is altered.

Example. (Example Sheet 1, Q7)

H1-3+3—3+
) 1+3-44+14+1-24+3+--
Let s, be the partial sum of (i) and ¢, the partial sum of (ii). Then s, — s > 0,
and ¢, — %
Rearrangement:

Definition. Let o be a bijection of the positive integers,

is a rearrangement.

Theorem 1.14. If > a,, is absolutely convergent, every series consisting of the same
terms in any order (i.e. a rearrangement) has the same sum.

Proof. We do the proof first for a,, € R. Let ) al, be a rearrangement of > a,. Let
Sy = Z?:1 a; and t,, = Z}l:l aj, s = Z;; aj. Suppose first that a, > 0. Given n, we
can find ¢ such that sq satisfies

tp <sq<s

Now since ¢, is an increasing sequence bounded above, t,, — t. Clearly ¢t < s. But by
symmetry, s < t, hence t = s.

If a,, has any sign, consider v, and wy, from theorem 1.13. Consider »_al, > v}, and
S>-w,. Since Y |a,| converges, both > v, and > w, converge. Use that v,,w, > 0 to
deduce that Y v, => v, and > w) = > w,. But a, = v, — w, hence > a, => al.
For the case a,, € C, write a,, = x,, + iy,. Since |x,|, |yn| < |an|, we have that > x,, and
>y, are absolutely convergent. By the previous case, Y =/, =Y x, and >y, = > yn
since a, = xl, + iy, = D> ap, =Y, a,. O

13



2 Continuity [3]

Let E C C non-empty, f : E — C any function, and let a € E. (This includes the case
in which f Is real-valued and E C R).

Definition 1. f is continuous at a € F if for every sequence z, € E with z, — a,
we have f(z,) = f(a).

Definition 2. f is continuous at a € F, if given € > 0, 36 > 0 such that if |z—a| < §,
z € E, then

1f(2) = fla)l < e
(e-6 definition).

We will prove that these two definitions are equivalent.

Proof. We know that given € > 0, 3 > 0 such that |z—a| < J, z € E, then |f(z)— f(a)| <
e. Let z, — a. Then Ing such that V n > ng we have |z, —a| < § hence | f(z,)—f(a)| < e
so f(zn) — f(a). For the other direction, assume that f(z,) — f(a) whenever z, — a
(zn € E). Suppose f is not continuous at a according to definition 2. Then:

Je > 0 such that ¥ 6 > 0, there exists z € E such that |z —a| < ¢ and |f(z) — f(a)| > e.

Let 0 = 1, from the above we get z, such that |z, — a| < % and |f(zn) — f(a)| > e.

n

Clearly z, — a, but f(z,) does not tend to f(a) because f(z,)— f(a)| > ¢, contradiction.
O

Proposition 2.1. a € FE, g, f : E — C continuous at a; Then so are the functions
f(2)+g(2), f(2)g(z) and \f(z) for any constant A\. In addition if f(2) #0V z € E
then % is continuous at a.

Proof. Using definition 1, this is obvious. Using the analogous results for sequences
(lemma 1.1), for example if z, — a then f(z,) — f(a) and g(z,) — g(a) so by lemma
L1 f(zn) + 9(2n) = f(a) + g(a) etc. O

The function f(z) = z is continuous, so by using the proposition, we get that every
polynomial is continuous at every point in C.

s N
Note. We say that f is continuous on F if it is continuous at every a € E.

N\ J
s N
Remark. Still it is instructive to prove proposition 2.1 directly from the -0 defi-

nition.
- J

14



Next we look at compositions.

Theorem 2.2. et f : A > Cand g: B — C and g : B — C be two functions
such that f(A) C B. Suppose f is continuous at a € A and g is continuous at f(a).
Then go f: A — C is continuous at a.

A
BHEE.

QP(A) [

Proof. Take any sequence z, — a. By assumption f(z,) — f(a). Set w, = f(z,) € B,
wn — f(a); thus g(wn) = g(f(zn)) = g9(f(a)). 0
Examples

1) f:R >R

B sm(l) x#0
o= {5 2

sinz is continuous (to be proved later!)
if x # 0, then 2.1 and 2.2 imply that f(x) is continuous at every x # 0. Discontinuous
at 0 because let z,, = (271+l)7 then f(z,) =1, , — 0 but f(0) =

B} ™

2 rsin (1) z#0
® vy frn ()
0 =0
f is continuous at 0, take x,, — 0 then
|f(an)| < |2

so f(xzn) — 0= f(0).

CRIb

Discontinuous at every point: if z € Q, take a sequence x,, — x with z,, € Q, then
f(zy) = 0 which doesn’t tend to f(z) = 1. Similarly if z ¢ Q, take x,, — = with
zn € Q. Then f(zy,) =1 so doesn’t tend to f(z) =

15
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Limit of a function

f:E CC — C. We wish to define what is meant by lim,_,, f(2), even when a might
not be in E. For example lim,_,o #2£ with £ = C\ {0}. Also, if £ = {0} U[L, 2] it does

4
not make sense to speak about z € E, 2z #0, z — 0.

Definition. £ C C, a € C. We say that a is a limit point of E if for any § > 0,
3 € E such that 0 < |z —a| < 4.

s N
Remark. a is a limit point if and only if 3 a sequence z, € E such that z, — a

and z, # a ¥V n. (Check the equivalence!)
L J

~

Definition. f: F C C — C and let a € C be a limit point of . We say that
lim, ,, f(2) =1 (“f tends to [ as z tends to a”) if given € > 0, 30 > 0 such that
whenever 0 < |z —a| < 0 and z € E, then |f(z) — ] < e.

J

Equivalently: f(z,) — [ for every sequence z; € E, z, # a and z, — a (proved exactly
as last time with definition 1 <= definition 2).

Remark. Straight from the definitions we have that if a € F is a limit point, then
lim,_,, f(2) = f(a) if and only if f is continuous at a.

If a € F is isolated (i.e. a € E and is not a limit point) then continuity of f at a always
holds.
The limit of functions has very similar properties to limit of sequences.

(1) Tt is unique, f(z) > A and f(z) > Basz —a
A= B| <|A—f(2)| +|f(z) - B|

if z € F is such that |z — a| < 01,02 then |[A — B| < 22 so A = B. (the 3 of such z
is consequence of the condition that a is a limit point of E).

(2) f(z)+g(z) > A+ B (f(2) > A, g(2) > B as z — a).
(3) f(2)g(z) — AB

(4) if B#0, ;8 — % all proved in the same way as before.

16



2.1 The Intermediate Value Theorem

Theorem 2.3. f : [a,b] — R continuous and f(a) # f(b). Then f takes every value
which lies between f(a) and f(b).

p [CL)'

(for all f(a) <n < f(b), Jc € [a,b] such that f(c) =n)

Proof. Without loss of generality we may suppose that f(a) < f(b). Take f(a) < n <
f(b). Let

S={z€lab]: f(z) <n}
a€S,s0S # (. Clearly S is bounded above by b. Then there is a supremum ¢ where
¢ <b. By definintion of supremum, given n, there exists z,, € S such that

1
c——<zp,<c
n

S0, T, — ¢ since x, € S, f(x,) < n. By continuity of f, f(z,) — f(c). Thus f(c) <.
Now observe that ¢ # b. Then for n large, we can consider ¢ + % € [a,b] and ¢+ % —c.
Again by continuity

f <c+ i) — f(c)

but since ¢ + % > ¢, fe+ %) > 7 (by definition of supremum). Hence f(¢) > n and
therefore f(c) = n. O

[ Remark. The theorem is very useful for finding zeros or fixed points. j

17
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Example. Existence of the n-th root of a positive real number.
f(x) =2", x>0
Let y be a positive real number. f is continuous on [0,1 + y] and
0=f0)<y<(1+y)"=fl+y)

so by the Intermediate Value Theorem, 3¢ € (0,1+y) such that f(c) =y, i.e. "=y
so ¢ is a positive n-root of y. We also have uniqueness! (check)

Bounds of a continuous function

Theorem 2.4. Let f : [a,b] — R be continuous. Then there exists K such that
[f(@)| < KV € a,b].

Proof. We argue by contradiction. Suppose statement is false. Then given any integer
n > 1, there exists z,, € [a,b] such that |f(x,)| > n. By Bolzano-Weierstrass, x,, has a
convergent subsequence Tpn; — T. Since a < Tn; < b, we must have x € [a,b]. By the
continuity of f, f(xn;) = f(z) but [f(zn,;| > n; — 0o (as j — 00). 3K O

Theorem 2.5. f: [a,b] € R continuous. Then 3z1, x5 € [a, b] such that

fz1) < f(x) < f(2)

for all = € [a,b]. (“A continuous function on a closed bounded interval is bounded
and attains its bounds”).

Proof. Let A = {f(x) : © € [a,b]} = f([a,b]). By Theorem 2.4, A is bounded. Since it
is clearly non-empty, it has supremum, M. By definition of supremum, given an integer
n > 1, 3z, € [a,b] such that

1

By Bolzano-Weierstrass, 3 z,; — x € [a,b]. Since f(zn;) — M (by (x)) and f is
continuous, we deduce that f(x) = M. So zo := z. Similarly for the minimum. O

Proof (alternative proof). A = f([a,b]), M = sup A as before. Suppose A x2 such that

f(xe) = M. Let
1

O T )
for x € [a,b]. It is defined and continuous on [a, b]. By Theorem 2.4 applied to g, 3k > 0
such that
g(z) < K vV x € |a,b

18



This means that f(zx) < M — % for all = € [a, b]. This is absurd since it contradicts that
M 1is the supremum. O

Note. Theorems 2.4 and 2.5 are false if the interval is not closed and bounded. For
example, consider

1,  f@)=:

2.2 Inverse Functions

Definition. f is increasing for x € [a,b] if f(z1) < f(x2) for all z1,z9 such that
a <z <x9 <Db If f(z1) < f(x2) we say that f is strictly increasing. Similarly for
decreasing and strictly decreasing.

Theorem 2.6. f : [a,b] — R continuous and strictly increasing function z € [a, b].
Let ¢ = f(a) and d = f(b). Then f : [a,b] — [c,d] is bijective and the inverse
g:= f~':e,d] — [a,b] is continuous and strictly increasing.

( N
Remark. A similar theorem holds for strictly decreasing functions.

- J

Proof.

r
N

Take ¢ < k < d. From the Intermediate Value Theorem, 3h such that f(h) = k. Since
f is strictly increasing h is unique. Define g(k) := h and this gives an inverse

g:le.d = la,b]
for f.

19



e ¢ is strictly increasing because y1 < y2, y1 = f(x1), y2 = f(x2). If 9 < 21 then
since f is increasing f(z2) < f(z1) and so y2 < y1, contradiction.

e g is continuous because let € > 0 be given, then let k; = f(h—¢) and k2 = f(h+¢).
f is strictly increasing so k1 < k < ko. If by <y < kg then h—e < g(y) < h+esog
is continuous at k. Here we took k € (¢, d) but a very similar argument establishes
continuity at the endpoints (check!)

O
Start of
lecture 9
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3 Differentiability [5]

Let f: E C C — C, most of the time E = interval C R.

Definition. Let z € F be a point such that dx, € F with z,, # « V n and x,, =
(i.e. a limit point). f is said to be differentiable at x with derivative f’(x) if

L 1) = @)

y—r Y —x

= f'(=)

If f is differentiable at each x € E then we say that f is differentiable on E. (Think
of E as an interval or a disc in the case of C).

~

Important Remarks

(1) Other common notations:
dy df
dx dx

(2) f(z) =limy_y 7f(x+h}2_f(x) (y=x+h)
(3) Another look at the definition: Let
e(h) = f(z+h) — f(z) — hf'(z)
then h)
€
lim ——=
hso h
flw+h) = f(@) +hf' () +e(h)
Alternative definition of differentiability:

=0

Ve

Definition. f is differentiable at x if 3A and e such that
flx+h)= f(z)+hA+e(h)

where ,
lim =)

h—0 h =0

If such an A exists, then it is unique since

A e i T@ D) — f(@)
h—0 h

21



- 7 '>

(4) If f is differentiable at x then f is continuous at x since e(h) — 0, so f(z+h) — f(x)
as h — 0.

(5) Alternative ways of writing things:
flx+h) = f(x) + hf'(x) + hey(h)

with ef(h) =+ 0 as h — 0. Or

where lim,_,, e¢(z) =0 as  — a.

22



Example. f(z) = |z|, f: R —=R.

-
P -
<=
=

—_—
-
-

i AR >

—> e

~ -

Clearly f'(z) =1 for z > 0 and f/(z) = —1 for x < 0. Now for z = 0:

Take h,, > O:
i L) = FO) Py
n—o0 hn, n
Take h, < 0: (ha) 0
nh_}rgo I = hm—h—n = -1

so not differentiable at x = 0.

Differentiation of Sums, Products, etc

Proposition 3.1. (i) If f(z) = ¢ for all + € E then f is differentiable with
f(@) = 0.

(i) f,g differentiable at z, then so is f + g and
(f +9)(z) = f'(z) +¢'()
(ii) f, g differentiable at z, then so is fg and
(f9)(z) = f'(z)g(z) + f(2)g'(2)

v ifferentiable at x an x x € B, then 3 is differentiable at x an
iv) f differentiabl d f(z) #0VY x € B, then 7 is differentiabl d

Proof.

23



(i) Timp 0 5 =0
(ii)

fx+h)+g(x+h) - f(z) - g(x) flz+h) - f(z) gz +h) —g(z)

e h =R h M=
= f'(z)+4 ()
using properties of limits
(ili) ¢(z) = f(z)g(x).
SR = 6() |+ byl h) — f@)g()
h—0 h h—0 h

— i 1) [ SR ZI gy | DI )0y gt

using standard properties of limits and the fact that f is continuous at z.

(v) 6() = 75

i @) Z0@) _ TG T
h—0 h h—0 h
i J@ =@ b 1 __ '@
70 h f(@)f(z+h) [f(x)]?

Remark. from (iii) and (iv) we get

(f(x)>' _ f'@)g(z) — f(z)g'(x)
g9(z)

Start of
lecture 10 Example. f(z) = 2", n € Z, n > 0. n = 1, clearly f(x) = z and f'(z) =
1.

Claim. f/(z) = na"!

Proof. Induction (n = 1 is clear). f(z) = z2" = 2!, So
f(z) =2" + 2(nz"" ') = (n + 1)2"

[0 n = 0 can be done separately, and negative n can be done using Proposition
3.1 (iv):
(xn)/ nl,n—l

/ _ _ o n—1
f(.’L‘)—— 2n - 2n = —nr
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Here is another useful result:

Theorem 3.2 (Chain rule). f : U — C is such that f(z) € VVa2 € U. If f
is differentiable at @ € U and g : V' — C is differentiable at f(a), then g o f is
differentiable at a with

Proof. We know:
f(@) = fa) + (z —a)f'(a) + &4 (z)(z — a)

(where lim,_,, ef(x) = 0). Also

9(y) = g(b) + (y = b)g' (b) + €4(y)(y — b)

(where limy,_,; e4(y) = 0).
Let b = f(a). Set e¢(a) = 0 and 4(b) = 0 to make them continuous at = a and y = b.
Now y = f(x) gives
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Examples

(1) f(z) = sin(x?), (sinx)’ = cosz

(2)

B JJSin(%) x#0
O

From previous lectures f is continuous. It is differentiable at every x # 0 by the

previous theorems. At x =0,
1010 _ (1)
t t

so the limit does not exist, so f is not differentiable at x = 0.

The Mean Value Theorem

Theorem 3.3 (Rolle’s Theorem). Let f : [a,b] — R continuous on [a, b] and differ-
entiable on (a,b). If f(a) = f(b) then 3¢ € (a,b) such that f'(c) = 0.

Proof. Let M = max,c(qp) f() and m = ming¢|,) f(2). Recall by Theorem 2.5 that
these values are achieved. Let k = f(a) = f(b). If M = m =k, then f is constant and
f'(¢) =0V c € (a,b). If f is not constant then M > k or m < k. Suppose M > k. By
Theorem 2.5 3 ¢ € (a,b) such that f(c) = M. If f'(¢) > 0, then there are values to the
right of ¢ for which f(x) > f(c). Why?

f(h+c) = f(c) = h(f'(c) +&5(n))

since e¢(h) = 0 as h — 0, f'(c) +e¢(h) > 0 for h small. This contradicts that M is the
maximum. Similarly if f/(¢) < 0 there exists x to the left of ¢ for which f(z) > f(¢).
Hence f’(¢) = 0. O

Theorem 3.4 (Mean Value Theorem). Let f : [a,b] — R be a continuous function
which is differentiable on (a,b). Then 3 ¢ € (a,b) such that

f®) = fa) = f'(c)(b—a)

Proof. Write
o(x) = f(x) — ka
choose k such that ¢(a) = ¢(b). Hence f(b) — bk = f(a) — ak

D f@
b—a
By Rolle’s theorem applied to ¢, 3 ¢ € (a,b) such that ¢'(c) =0, i.e. f'(c) =k. O
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P
Remark. We will often write

fla+h) = f(a) + hf'(a+6h)

for 6 € (0,1). (Note that 6§ = 6(h)!)

&

Corollary 3.5. f:[a,b] — R continuous and differentiable on (a,b).

(i) If f'(x) > 0V = € (a,b) then f is strictly increasing. (i.e. if b >y > z > a,
then f(y) > f(x))

(ii) If f'(z) > 0V z € (a,b) then f is increasing (i.e. if b > y > = > a then
fy) > f(x))

(iii) If f'(z) =0V = € (a,b) then f is constant on [a, b].

Proof.

(i) MVT
= fly) = f(x) = f'()(y —2)

F(©)>0 = f(y)> f()
(i) Same but f(c) =0 = f(y) > f(x).
(iii) Take z € [a,b]. Then use the MVT in [a, z] to get ¢ € (a,z) such that
f(2) — f(a) = f(e)(x —a) = 0
= f() = f(a)

so f is continuous.

Inverse Rule / Inverse Function Theorem

Theorem 3.6. f : [a,b] — R continuous and differentiable on (a,b) with f'(z) >
0V ze(a,b).
Let f(a) = c and f(b) = d. Then the function f : [a,b] — [c,d] is bijective and f~*

is differentiable with ]

—1y/ _
U= p@)
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Proof. By Corollary 3.5, f is strictly increasing on [a,b]. By Theorem 2.6 3 y

[a, b] which is a continuous strictly increasing inverse of f.
Need to prove that g is differentiable and that

1
/
ag\¥y) = 77
W= 5
where y = f(x) and z € (a,b). If k # 0 is given, let h be given by
y+k=f(z+h)
That is, g(y + k) =z + h, h # 0. Then

gly+k)—gly) _ _zth-=z

k flz+h) = f(z)

Let k — 0, then h — 0 (since g is continuous), and then

— lim (y+k) gly) _ 1
k—0 f’(x)

Example. g(z) = za (x > 0, g a positive integer).
fl@)=a?  fl(z)=qa?""

f is differentiable, then so is g and by Theorem 3.6 (inverse rule)

s e, d] —

[ Remark. If g(z) = 2", r € Q then ¢'(x) = ra"~! (check!)

J

Suppose f,g : [a,b] — R continuous and differentiable on (a,b) and g(a) # g(b), then

the MVT gives us s,t € (a,b) such that

f) = fla) _ (b=a)f'(s) _ f'(5)
g9(b) —gla)  (b—a)g'(t)  ¢'(t)

Cauchy showed that we can take s = t.

Theorem 3.7 (Cauchy’s Mean Value Theorem). Let f, g : [a,b] — R be continuous

and differentiable on (a,b). Then 3 ¢ € (a,b) such that

(f(0) = f(a))g'(t) = f'(t)(g(b) — g(a))
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[ Note. We recover the MVT if we take g(z) = =.

Proof. Let
1 1 1

¢(x) = |fla) f(x) [f(b)
g(a) g(z) g(b)

¢ is continuous on [a, b] and differentiable on (a,b). Also

¢(a) = ¢(b) =0
By Rolle’s Theorem 3 ¢ € (a,b) such that
¢'(t) =0

¢'(x) = f(2)g(b) — g'(x) f(b) + fla)g'(z) — g(a) f'(x)
= f'()[g(b) — g(a)] + ¢'(2)[f (a) — £(b)]

and ¢'(t) = 0 gives the desired result.
“Lesson”: good choice of auxiliary function 4+ Rolle!

Example (L’Hopital’s Rule). The example:

| . e® — el
lim — = lim ———
z—0 sinx z—0sinx — sin0
t
. e
=lim—=1
z—0 cost

where t = t(x) € (0,z) is chosen using Cauchy’s Mean Value Theorem.

Goal: we want to extend the MVT to include higher order derivatives.

x € (a,a + h). Then

hn—lf(n—l) ((1)

2
fla+h) = f(a) + hf'(a) + %f"(@ L S Y

where 6 € (0,1).

Theorem 3.8 (Taylor’s Theorem With Lagrange’s Remainder). Suppose f and
its derivatives up to order h — 1 are continuous in [a,a + h] and ) exists for

FLCCY (a4 0h)
n!
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Note. (1) For n =1 we get back MVT, so this is a “n-th order MVT”.

(2) R, = ’;—7 f™ (a4 6h) is known as Lagrange’s form of the remainder

Proof. Define 0 <t < h
tnfl
(n—1)!

(n—1)(,y _ 1"
1@ - B

o(t) = fla+1t)— fla) —tf'(a) — - —

where we choose B such that ¢(h) = 0. (Note ¢(0) = 0.) (Recall that in the proof of
the MVT we used f(z) — kxz and picked k so we could use Rolle). We see that

6(0) = ¢; (0) = -+ =" V(0) =0

We use Rolle’s Theorem then n-times. Since ¢(0) = ¢(h) =0

Rolle = ¢'(h1) =0 0<hi<h
Since ¢'(0) =0 = ¢'(hq)

Rolle = ¢"(hs) =0 0<hy<hy
Finally ¢(*~1(0) = ¢(* Y (h,_1) =0

Rolle = ¢™(hy) =0 0<hp<hp1<---<h
0 h, = 0h for 6 € (0,1). Now
¢ () = fM(a+1)- B

— B=f™(a+06h)
Set t = h, O(h) = 0 and put this value of B in the second line in the proof. O

Theorem 3.9 (Taylor’s Theorem with Cauchy’s Form of Remainder). With the
same hypothesis as in Theorem 3.8 and a = 0 (to simplify) we have

B , hn—l (n—-1)
) = O+ hf'©O) -+ 7=y f V(0) + Ry,
where ( ) Ly )(gh)h
1— n— n n
B = (n—1)!
for 6 € (0,1).
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Proof. Define

(n—1)!
for ¢ € [0, h].
_ )2 _ \n—1
F(0) = =1 0+£ O~ (h=08"0)+ -0 - "5 - G o0
_ f\n—1
— r( =~

o= - | "] Fo

with p € Z, 1 < p <n. Then ¢(0) = ¢(h) = 0. By Rolle’s 3 6 € (0,1) such that

@' (60h) =0
but o1
ooy = Fom) + L= 0y — o
A=t ) p(1 -6 / A=Y
= 0= T PO () = 0) = h0) - = g/ 0)
_ , ) h™(1— )"t (n)
If p = n we get Lagrange’s remainder. If p = 1 we get Cauchy’s remainder. O

To get a Taylor series for f one needs to show that R, — 0 as n — oo. This requires
“estimates” and “effort”.

{ Remark. Theorems 3.8 and 3.9 work equally well in an interval [a + h,a] with }
h < 0.

Example. The binomial series:

f@)=(1+a2)y, reQ
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Claim. If |z| < 1, then

(1—|—x)’"—1+<:>x+'--+<2>x”+-“

<r> aet r(r = 1) - (r—n+1)

where

n n!

Proof. Clearly
M@y =rr—=1)--(r—n+1(1+2)""

IfreZ,r >0, then
f(T'H) =0

we have a polynomial of degree r. In general (Lagrange)

_ T gy = (7)o
Fin n! S o) n> (1+ Ox)n—"

(0 €(0,1))

[ Note. In principle, 8 depends on both x and n.

For0 <z <1,
(I+6x)" " >1

for n > r. Now observe that the series

is absolutely convergent for |z| < 1. Indeed by the ratio test

”
an = z"
n

_ e _ r(r—1)--(r —n+1)(r —n)z"! n!
Qn B (7’L—|—1)' r(r_l)...(r_n_i_l)xn
_|r=n)z Sla) <1
n+1

In particular a,, — 0 so (;):U” — 0. Hence for n > r and 0 < z < 1, we have

IR,| < ]<T>x"| = lan| = 0
n
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as n — 00. So the claim is proved in the range 0 < z < 1.
If —1 < < 0 the argument above breaks, but Cauchy’s form for R,, works:

Q=0 tr(r—1)--(r —n+1)(1 + 0x)" "™

R, =

(n—1)!
(=1 (r—m+1) 1-6)"1 o
B (n —1)! (14 )=
(1)
n—1
r—1 1-46
— n(1 0 r—1
T<n—1>m( + ) 1+ 0x
N——
<1
Vee(—1,1)
— R < (70 ) | (14 b2y
n| S |T n—1 X X
Check:
(1+62)"" <max{1,(1+z)"1}
(do it!) Let
K, = |r|max{1, (1 + x)r_l}
independent of n.
-1
IR, < K, (’" )x” -0
n—1
because a, — 0, thus R,, — 0. O

Remarks on Complex Differentiation

Formally for functions f : E C C — C we have properties for sums, products, chain rule
etc. But it is much more restrictive than differentiability on the real line.
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Example. f:C—C, f(2) =z

A\

1
1
B T T

If
Zn=2+——2
n
then
fn) = f(2) _Z+5 =% _
2 — % 24+ 12
but on the other hand if
Zn=zZ+— >z
n
then ,
flen) = fz) _Z=t-2 _
Zn — % Z+%—Z
SO
W) = 1)
w—z w— z

does not exist, so it is nowhere C-differentiable!

[ Note. IB Complex Analysis explores the consequences of C-differentiability.

Start of
lecture 14
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4 Power Series [4-5]
We want to look at

Z an2" (*)
n=0

z€C, ay € C. (The case > o7 jan(z — 20)", 2o fixed, can be reduced to (x) by transla-
tion).

Lemma 4.1. If >  a,z] converges and |z| < |z1], then > 7 anz" converges
absolutely.

Proof. Since Y > anz] converges, anzi’ — 0. Thus 3 K > 0 such that |a,2]| < K V n.
Then

n e
lan2"| = |anz" |
|27
P n
<K|=
21
<1
Since the geometric series
oo n
>
z
n=0 1
converges, the lemma follows by comparison. O

Using this lemma, we’ll prove that every power series has a radius of convergence.

Theorem 4.2. A power series either
(1) Converges absolutely for all z, or

(2) Converges absolutely for all z inside a circle |z| = R and diverges for all z outside
it, or

(3) Converges for z = 0 only.

Definition. The circle |z| = R is called the circle of convergence and R is the radius
of convergence. In (1) we agree that R = oo and in (3) R =0 (so R € [0, x]).

Proof. Let
S={x€R:z>0and Zanx" converges }
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Clearly 0 € S. By Lemma 4.1 if z; € S, then [0,21] C S. If S = [0,00) we have case
(1). If not, there exists a finite supremum for S. Let R =supS < oo, R > 0. If R > 0,
we'll prove that if |z1| < R, then ) an2]" converges absolutely. Pick Ry such that

|21l < Ro < R

Then Ry € S and the series converges for z = Ry. By Lemma 4.1, > |a,2}"| converges.
Finally we show that if |22| > R, then the series does not converge for zo. Pick R <
Ry < |za|. If > anzy converges then by Lemma 4.1 > a,, R would be convergent, which
contradicts that R = sup S. O

The following lemma is useful for computing R:

QAnt1
an

Lemma 4.3. If — lasn — oo, then R = %

Proof. By the ratio test we have absolute convergence if

an+1zn+1

lim <1

a, 2"

so if |2| < 7 we have absolute convergence. If |z| > }, the series diverges, again by ratio
test. O

[ Remark. One can also use the root test to get that if |a,|/™ — I, then R = 7. }

Examples
1) Xoio %
n!
(n+1)! n+1

An+1
Qap

0=l —= R=

(2) Geometric series, _° ;2". R =1. Note that at |z| = 1 we have divergence.

(3) X2 g ntan.
1)!
= (n;; ) =n4+1—->00 = R=0

an+41
an,

n

(4) Y02, %, R=1. (for z = 1 it diverges (harmonic series)) What happens for |z| =1
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and z # 1?7 Consider >.°° , Z-(1 — z). Then

n=1n

N Zn_szrl
SN = E E—
n

v 2 ()

if 2] =1, then 25— — 0 as N — oo and ) m converges, so S CONverges.

n

(5) >-n2y %5, R =1 but converges for all z with |z| = 1.

Conclusion

In principle nothing can be said about |z|] = R and each case has to be discussed
separately. Within the radius of convergence “life is great”. Power series behave as if
“they were polynomials”.
Start of
lecture 15 Theorem 4.4. f(z) = >, a,2z" has radius of convergence R. Then f is differen-
tiable at all points with |z| < R with

fl(z) = inanz”_l
n=1

Proof (non-examinable). We need two auxiliary lemmas:

Lemma 4.5. If Y~  a,2" has radius of convergence R, so do

o0 oo
E na,z" 1! and E n(n — 1)a,z"2
n=1 n=2

Lemma 4.6. (i) (") <n(n— 1)(7;:3) forall2<r<n

(ii) |(z +h)™ — 2" — nh2"" Y < n(n — 1)(|z] + |h])"2|h|? for all z € C,h € C.
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Proof of 4.4. (after which we prove the lemmas) By Lemma 4.5 we may define

o
= Znanzn_l |z| < R
n=1

Then we are required to prove that

f(z+h) = f(z) = hf'(2)

li =
hs0 h 0
;. fEHh) = f(z) —hf(z)
' h
Zan((z—i—h) — 2" —hnz""")
n=0
N
1 : n n n—1
|| T ]\}1_H>1 gan((z+h) — 2" —nhz""")
1 N
—W]\}im Zan((z+h)”—z" nhz"" 1)
— 00
1 X
< WZ|anH(z+h)"—z”—nh n—1|
n=0
W Zlanln D)(Iz] + )" ~2|A|?

= 1 aalntn — (1l + 1)

n=2
By Lemma 4.5, for |h| small enough,

o0

> lanln(n —1)(|z| + h])*~2

n=2
converges to A(h), but A(h) < A(r) for |h| < r and |z| +r < R. Hence

1] < |h|A(h) < [h]A(r) =0
as h — 0. O Proof of Lemma 4.5. Take z and Ry such that 0 < |z|] < Ry < R. Since
an Ry — 0, 3 K such that |a,Rf| < K,V n > 0. Thus

n

|nanz”_1| \an

2|

Kn
<

IE]

n
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n
But > n RLO converges by the ratio test:
n+1|z | Ryl" n+1] 2z z <1
n Ro z N n Ro R[)

if |z| > R, the series diverges since |a,2"| is unbounded hence so is n|a,z"|. The same
proof applies to >_°° , n(n — 1)a,2"2. O Proof of Lemma 4.6.

(i) () nt  (-2lp—t_ne-1)

() T rle—mT (-2 -1 (n—1)
. (z+h)" — 2" —nhz"! = ~ (" e
(1)
Thus
‘(Z‘f‘h)n—zn—nhz"’lyg ~ (n 2" |h)"
(1)
nn — 3 n—2 znfr r—9 2
<n(n—1) [;<r—2)” | ]yhy
=n(n—1)(]z| + |h])”*2‘h|2
- O

4.1 The Standard Functions

(exponentials, logs, trigonometric, etc)

We have already seen that

has R = co. Define e : C — C by

e(z) = Z%

n=0

Straight from Theorem 4.4, e is differentiable and
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Lemma. If F: C — C has F'(z) =0 for all z € C, then F is constant.

Proof. Consider g(t) = F(tz). By chain rule:
gdt)=F(tz)2=0

if g(t) = u(t) +iv(t) then ¢'(t) = v/ (t) + iv'(t) so v’ = v’ = 0. Apply Corollary 3.5 to
get the claim. O

Now let a,b € C. Consider
F(z)=ela+b—2)e(z)

F'(z) = —e(a+b—2)e(z) +e(a+b—2)e(z) =0

so F'is constant. Use 2 = b and 2z = 0 to deduce that

le(a)e(b) = e(a+b)]

Start of Now we restrict to R:
lecture 16

Theorem 4.7. (i) e: R — R is everywhere differentiable and €'(z) = e(x)
(i) e(z +y) = e(x)e(y)

(iii) e(z) > 0 for all z € R

(v) e(x) > o0 as z — 00, e(x) > 0as x — —00

)
)
(iv) e is strictly increasing
)
)

(vi) e: R — (0,00) is a bijection.

Proof.
(i) Already done.

(ii) Clearly
e(r) >0 VY >0

and e(0) = 1. Also
e(0)=e(z—z)=e(x)e(x) =1 = e(—z) >0
for all x > 0.
(iii) Already done.

(iv) €'(z) = e(z) > 0 so e is strictly increasing.
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(v) e(z) > 1+ for z > 0 so if x — o0, e(x) — co. For x > 0 since

then e(z) — 0 as © — —oo.

(vi) Injectivity follows right away from being strictly increasing. Surjectivity: Take
y € (0 € 00). From (v) there exist a,b € R such that

e(a) <y <e(d)

so by the Intermediate Value Theorem there exists = € R such that e(z) = y.

[ Remark. e: (R,+) — ((0,00), x) is a group isomorphism. ]

Since e is a bijection we have an inverse:

l:(0,00) > R

Theorem 4.8. (i) [:(0,00) — R is a bijection and l(e(x)) = z for all € R and
r(l(t)) =t for all ¢t € (0,00).
(i) 1 is differentiable and I'(t) = 1.

(iil) (zy) = l(z) + l(y) for all z,y € (0,00).

Proof.
(i) Obvious from the definition of .

(ii) Inverse rule (Theorem 3.6) [ is differentiable and

(iii) From IA Groups if e is an isomorphism, so is its inverse.

Now define for o € R and x > 0:
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Theorem 4.9. Suppose z,y > 0 and a, 3 € R. Then
(i) ra(zy) = ra(®)ra(y)
(il) ratp(z) = ra(z)rs(z)

(ili) ra(rg(e)) = ras(z)
) 71

(iv) m(z) =z, ro(z) = 1.

Proof.
(i)

(i) rars(z) = e((a+ B)l(x))

= e(al(z))e(Bl(x))
= ra(z)ra(z)

(iii)

(¢eZ,q>1)
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ro(@) = (ry(2)f = ot

Thus 7, (x) agrees with 2% when a € Q as previously defined. Now we give them names:

exp(z) = e(x) reR
logz = I(x) z € (0,00)
x4 =rq(x) a€R z e (0,00)

e(r) =e(xloge) = ey (e) =€”
where

1
n!

o0
def
C === Z
n=0

exp(z) is also a power, which we may as well write as e”. Finally we compute

(xa)/ — (ealogm)/
— ealoga:g
x

— O[xafl

f,(f) — (escloga)/ — 6m10ga10ga —a% loga

e 2
Remark. “Exponentials beat polynomials”

T

lim — =0
T—00 I

(k > 0). This is easy to prove since

i=0 7
for x > 0. Now pick n > k and then
e xn—k
% > — 0
x n!
as r — 00.
N J
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Trigonometric Functions

22 24 > (_1)k22k

Cosz:l—gﬁ_g_zzw
n=0

23 25 e (_l)kz2k+1

Slnz:z_§+§_..':nzom

Both power series have infinite radius of convergence and by Theorem 4.4 we get

(sinz) = cos z, (cosz) = —sinz

0 i \n 00 i N2k OO i NIK41
, iz iz iz
PO IO O
n! b= (2k + 1)!
(i2)2k — (_1)lc122k:7 (i2)2k+1 — i(—l)kz2k+1
= e®* =cosz+isinz
Similarly
e ¥ =cosz —isinz
which gives
1 . .
cosz = 5(6” +e ")
: 1 (
sinz = —(e
21
From this we get many trigonometric identities:

iz e—iz)

cos z = cos(—z), sin(—z) = —sinz
cos(0) =1, sin(0) =0
Addition formulas:
(1) sin(z 4+ w) = sin z cos w + cos z + sinw
(2) cos(z 4+ w) = cos zcosw — sin zsinw, z,w € C.

These follow from e = e%b. To prove (2) write

l(ei(erw) + efi(erw))
2
— %(eizeiw + eizeiw)

cos(z +w) =

cos z cosw — sin z sinw = 1(6” +e ) e+ e )+ (¥ —e F) (e — e )

4

operate to get the result. Also we can easily deduce that sin? z +cos? z = 1 for all z € C.
Now if € R, then sinx,cosz € R and so |sinz|,|cosz| <1 for z € R.
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p
Remark. They are not bounded over C. For example take

1
cos(iy) = i(e_y +e¥)

(y € R) then as y — oo, cos(iy) — oo!
L

Periodicity of the Trigonmetric Functions

Proposition 4.10. There is a smallest positive number w (where v2 < ¥ < /3)

such that

w
7_0
COS2

Proof. If 0 < x < 2 then

x3 .%'5 1'7
Sl““(“m)*(sz‘w)*"'

>0 >0

2n—1 2n+1
(If 0 < & < 2 then (gn,m > (§n+1)

;) Hence sinz > 0. Since (cosz) = —sinz < 0 for

0 < x < 2, cosx is strictly decreasing. We’ll show that cosv/2 > 0 and cosv/3 < 0.

Then by the intermediate value theorem the existence of w follows.

cos V2 = (W_(\/i)6>+(...)+(...)+...

>0 >0

>0

So cosv/2 > 0. Now note that

2 4 6 8
COS\/§:1—;+x—<$—m>—"‘

4! 6! 8!
——
>0
But 3 9
1—-— =]l—-=-4+-=—
2 4x3x2 2+8 <0
s0 cosV/3 < 0.

Corollary 4.11. sing = 1.

Proof. Use sin® 7+ cos? g =1andsing > 0.

Now define 7 = w.
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Theorem 4.12. (1) sin(z+ 5) = cosz, cos (z + §) = —sin z.
(2) sin(z +7) = —sin z, cos(z + 7) = — cos 2.

(3) sin(z + 27) = sin z, cos(z + 27) = cos z.

Proof. Immediate from addition formulas and cos § = 0, sin § = 1.
This implies

2T — cos(z + 21) + i sin(z + 2)

=cosz+1sinz

eiz

8o e” is periodic with period 2mi.
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~

Remark. “Relation with geometry”
Given two vectors z,y € R? define x - y as in vectors and matrices:
Ty = T1Y2 + T2Yy2
z = (21,%2) y = (y1,92)
Cauchy-Schwarz:
|z -yl < [lllllyl
where ||z||? = 2% + 22. So, for x # 0, y # 0
-y
~=lliyll
Define the angle between x and y as the unique 6 € [0, 7] such that
cosf = by
[yl
R e
T
V) % N
gt 1 2
a A
A% >e
\\7 5/ ’
x = (h,v),cos0 =z-e1 =h
= J

Hyperbolic Functions

(Hyperbolic sine and cosine)

Definition. coshz = 1(e* + e7%), sinhz = J(e* — e#). Alternatively, coshz =
cos(iz), sinh z = —isin(iz).

One can also prove that (coshz)’ = sinhz and (sinh z)’ = coshz. (This is left as an
exercise). We also have

cosh? z —sinh?z = 1

The rest of the trigonometric functions (tan, cot, sec, cosec) are defined in the usual way.
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5 Integration

f :]a,b] = R bounded. (i.e. there exists K such that |f(z)| < K V x € [a,b])

Definition. A dissection (or partition) D of [a, b] is a finite subset of [a, b] containing
the endpoints a and b. We write

D ={xg,x1,...,24}

witha=2pg <21 < - <xp_1 <z=b.

Definition. We define the upper sum and lower sum associated with D by

n

S(f,D) = Z(w] —Zj_1) [sup ]f(ac) (upper)
j=1 TE[Tj—1,T;
s(f,D) = Z(l‘j —xj—1) inf  f(x) (lower)

= TE[w;—1,2;5]

Clearly s(f,D) < S(f,D) for all D.

Lemma 5.1. If D and D’ are dissections with D’ O D, then

S(f,D) > S(f, D) >s(f,D')>s(f,D)

Proof.
S(f,D') = s(f.D)

is obvious. Suppose D’ contains an extra point than D, let’s say y € (x,—1,2,). Then
clearly

sup  f(z), sup < sup f(z)

TE[Tr—1,Y] TE[yY,Tr] TE[Tr_1,2r]
— (zr —xr—1) sup  f(x) > (y—ar—1) sup f(z)+ (zr —y) sup f(z)
TE[Tr—1,Tr] z€[Tr—_1,Y] z€ly,zr]

= S(f.D) > 5(,D')

The same for s and the same if D’ has more extra points than D. O

48



Lemma 5.2. Dy, D> two arbitrary dissections. Then
S(f,D1) > S(f, D1 UD2) > s(f,D1UDz) > s(f,D2)

and in particular
S(f: Dl) Z s(fa DQ)

Proof. Take D' = D1 U Dy D Dy, Dy in the previous lemma.

Definition. The upper integral of f is
I*(f) = inf S(/.D)
(always exists!) The lower integral of f is

L(f) = S%pS(f,D)

By Lemma 5.2,

because
S(fapl) Z 8(f7D2)

I“(f) > sgPS(f, Ds) = L(f)

-

Definition. A bounded function f : [a,b] — R is said to be Riemann integrable (or
just integrable) if

and we set
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Example.

1 zeqno,1]
f(x)_{o z¢€QNJ[0,1]

f:[0,1] = R; f is not Riemann integrable:

sup  f(z) =1, inf f(x)=0

IE[ijl,xj] mE[xjfl’zj]

Hence s(f,D) =1 and s(f,D) =0 for all D. Hence I*(f) = 1, but L.(f) = 0.

Theorem 5.3. A bounded function f : [a,b] — R is Riemann integrable if and only
if given € > 0, 3D such that

S(f,D)—s(f,D) <e

Proof. For every dissection D we have
0<I*(f) = L.(f) < S(f;D) = s(}, D)
If the given condition holds, then
0<I*(f) = L(f) < S(f,D) = s(f,D) <e

for all € > 0 hence I*(f) = L.(f).
Conversely, if f is integrable, by definition of sup and inf there are partitions D; and

Dy such that
b b
3 € €
—7:_[* —_ = —
/af 5 (f)+5 /Qf+2

By Lemma 5.1 (Dl UDy O Dl,Dg)
S(f, D1 U Dz) — 8<f, D1 U DQ) < S(f, Dg) — S(f, D1
b e b e
</a f+2—/a f+§
=£
]

We now use this criterion to show that monotone and continuous functions are integrable.

Remark. Monotone and continuous functions are bounded (theorem 2.6 for the
case of continuous functions).
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Theorem 5.4. Let f : [a,b] — R be monotone. Then f is integrable.

Proof. Suppose f is increasing (same proof for f decreasing). Then

sup  f(x) = flz;)

z€[z;—1,2;]
inf  f(x) = fla;1)
z€[z5-1,m;]

Thus

n

S(f,D) = s(f, D) =Y _(aj — xj-1)[f(2;) = f(zj-1)]

j—1

Now choose

and use Theorem 5.3. O

Continuous Functions

First we need an auxiliary lemma.

Lemma 5.5. f : [a,b] — R continuous. Then given € > 0, 3 6 > 0 such that if
|t —y| <0 = |f(x) — f(y)| < e (uniform continuity). The point is that § works
V x,y as long as |z — y| < d. (in the definition of continuity of f at, § = f(x)).

Proof. Suppose the claim is false. Then 3 € > 0 such that V § > 0, we can find z,y € [a, D]
such that |z — y| < 6, but |f(z) — f(y)| = . Take § = L, to get zp,yn € [a,b] with
|Zn — Yn| < %7 but

[f(@n) = fyn)| = €

By Bolzano-Weierstrass, 3 z,,, — ¢ € [a, ]
[yni, = ¢l < |yn, — Ty | + |2y, — | =0

SO Yn, — c. But

o1



Let & — oo, then by continuity of f
[fle)=fle)| 2e = 0>¢

Absurd.

Theorem 5.6. Let f : [a,b] — R continuous. Then f is Riemann integral.

Proof. By 5.5, given € > 0, 3 § > 0 such that |z —y| <d = |f(x) — f(y)] <e. Let

:OSan}
Choose n large enough such that b_T“ < 4. Then for z,y € [z;_1, z;]

[f(z) = f(y)l <e,

since .
—a
<9

2 =yl < |z —zj1] =

Observe that
max f(z)— min f(z)= f(p;) — f(g))

z€lj—1,1] z€laj—1,1]
0j,¢; € [zj—1,x;] (max and min are achieved due to continuity). Hence

n

S(£,D) = s(£,D) = (x5 — x;-1)[f(ps) — F(g;)]

Jj=1
<elb—a)
O
Start of
lecture 20 Remark. We have shown that monotone functions and continuous functions are

Riemann integrable, but there do exist more complicated functions that are Riemann
integrable.s
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Example. f:[0,1] - R

q

L2 =2 ¢(0,1]in its lowest form
f(x) = ‘-
0 otherwise

Clearly s(f,D) = 0V D. We'll show that given ¢ > 0, 3D such that S(f,D) < €.
This would imply that f is integrable with fol f = 0. Consider the set

{xe[o,u:f(x)z}v}:{z:quN,KMq}

Take N € N such that % < 5. This is a finite set
O<ti<tg<---<tp=1

Consider a dissection D of [a, b] such that

(1) Each ¢, 1 <k < R is some (z;_1, ;)

(2) V k, the unique interval containing t; has length at most 5.

Note f <1 everywhere so
1

<
_N+

S(f,D) <e

| ™

Elementary Properties of the Integral

Let f, g bounded and integrable on [a, b].

b b
/ f=< / g
(2) f + g is integrable on [a, b] and

/abf+g—/abf+/abg

(3) For any constant k, kf is integrable and

/abk:f:k:/abf
I/abflé/ablfl

93

(1) If f < g on [a,b] then

(4) |f] is integrable and



(5) The product fg is integrable.
Proof.
(1) If f < g, then

[r=rw
’ <S8

(f,D)
< S(9,D)

b
— / f=I()
<I*(g)
b

= g

a

(2) sup (f+g)< sup f+ sup g

[zj—1,2;] [zj—1,2;] [zj—1,2;]
— S(f+9,D) < S(f, D)+ S(g,D)

Now take dissections D1 and Do

I'"(f +9) < 5(f +9.D1UDy)
< S(f,Dl UD2)+S(97D1 UDQ)
S S(fapl) +S(g7D2)

Fix D; and take inf over Dy to get
I"(f +9) < S(f,D1) +I"(g)

now take inf over all D; to get

b b
I*(f+g)§1*(f)+l*(g)=/ f+/ g

/abf+/abg<f*<f+g>

so f 4+ g is integrable with integral equal to the sum of integrals.

Similarly

(3) Exercise!

(4) Consider
fr () = max(f(x),0)

sup fy— inf fiL < sup f— inf f

[.Z‘jfl,xj] [zj—1,7; [J)jfl,xﬂ [z —1,74]
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We know that given € > 0 there exists D such that
S(f,D) —S(f,D) <eg

(criterion from last time)

n

S(f,D)—s(f,D)=> ( sup f— inf f)(z;j—xj_1)

j=1 [l?]'_l,mj] [xj*hxj}

= S(f+7D) - S(ervD) < S(f)D) - S(f,D) <e
= f, is integrable

But |f| =2f+ — f, so by (2) and (3), |f] is integrable. Since

—fl< f<If]

I/abeS/ablfl

property (1) gives

Take f integrable and > 0. Then

2
sup f2:< sup f) :sz

[xj—1,2;] [xj—1,2;]

2
inf f2:< inf f> =m;

[zj-1,7;] [zj—1,7;]
Thus

S(f*,D) - s(f*,D) (zj — zj—1) (M7 —m3)

J

|
.Mz

<
Il
—

(zj — zj—1)(Mj +mj)(M; —mj) < 2K(S(f,D) — s(f,D))

<
Il
—

I

(|f(X)] < KV z € [a,b]) Using the criterion in Theorem 5.3 we deduce that f? is
integrable. Now take any f, then |f| < 0. Since f? = |f|?> we deduce that f? is
integrable for any f. Finally for fg note that

Afg=(f+9)>—(f—9)°

hence fg is integrable given what we proved before.

Here is another property of Riemann integrals:
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(6) f is integrable on [a,b]. If a < ¢ < b, then f is integrable over [a, ] and [c, b] and

/bfz/chr/bf

Conversely, if f is integrable over [a,c] and [c, b], then f is integrable over [a, b] and

/ /f+/f

Proof of (6). We first make two observations:
e If D is a dissection of [a, c] and Ds is a dissection of [¢,b], then D = D; U D, is a
dissection of [a, b] and
S(f,D1UDa) = S(fla,es D1) + S(fie ) D2 (*1)
e Also if D is a dissection of [a,b], then
S(f,D) = S(f,Du{c})
= S(f[a,c]apl) + S(f[c,b]7D2) (*2)
where D; dissects [a, c] and Dy dissects [c, b].

Then (1) gives
I(f) < I (fra) + T (fie)
and (x2) gives
() = I"(flae) + I (fie)
= I"(f) = I"(fla,q) + " (flen)

Similarly
L(f) = L(fia,q + Le(fie)
Thus
0 < I*(F) = L(f)
= [I"(fla,) = L(fla,)) + [T (fiep) — Le(fien)]
From this (6) follows right away. O

Notation. It is a convention that if a > b, then

[i==]"

and if a = b we agree that its value is zero. With this convention if |f| < K, then

b
/f‘SK\b—al
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Fundamental Theorem of Calculus (FTC)

f :[a,b] = R bounded and integrable. Write:

F) - | " f(o)at

x € [a,b].

‘ Theorem 5.7. I is continuous.

Proof.

z+h

Fla+h) — F(z) / Ft)dt

S0

z+h

Flo+n) - F@l=| [ o
< K|hl

if |f| < K Vté€]la,b]. Now let h — 0 and we're done. O

Theorem 5.8 (FTC). If in addition f is continuous at z, then F' is differentiable
at x and

Proof. We need to consider

(for z + h € [a,b] and h # 0).

_ . z+h
‘F(Hh]z F( )7f($) :Ulz' /+ f()dt — hf(z)
1 x+h
- | [ 0 - s

f is continuous at z, means that given € > 0, 3 6 > 0 such that if |t — 2| < ¢ then

[f(t) — fl)] <e

If |h| < 8, we can write

1
< —¢lh|=¢
Al
This means P " r
lim (@ +h) = F(z) = f(x)

h—0 h
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Example.

Since monotone, it’s integrable. One can check that

F(:L'):{ =—1+ |z

-1 4
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Corollary 5.9 (integration is the inverse of differentiation). If f = ¢’ is continuous
on [a,b], then

/ Cf@)dt = g(@) —g(a) Vz€lad

Proof. From Theorem 5.8 F' — g has zero derivative in [a,b]. Hence F — g is constant
and since F'(a) = 0 this implies that F'(z) = g(x) — g(a). O

Every continuous has an indefinite integral or anti-derivative written f f(x)dz which is
determined up to a constant.

Remark. We have solved the ODE:

{y’(w) = f(x)
y(a) =%

Corollary 5.10 (integration by parts). Suppose f’ and ¢’ exist and are continuous
on [a,b]. Then

b b
/ f'g = F(b)g(b) — fla)g(a) - / 1d

Proof. By the product rule
(f9) = flg+ fd
By 5.9 b b
FO)90) ~ fagla) = [ Fo+ [ 1o

O

Corollary 5.11 (integration by substitution). Let g : [o, 8] — [a, b] with g(«) = a,
g9(B) = b and ¢’ exists and is continuous on [a, 8]. Let f : [a,b] — R be continuous.
Then

b B8
/ f(z)de = / Fa(t)d (Bt

Proof. Set F(z) = [ f(t)dt as before. Let h(t) = F(g(t)) (defined since g takes values
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in [a,b]). Then

B B
/ Flg(t))g (t)dt = / F(g(t))g (t)at (FTC)
= /B ' (t)dt (Chain rule)
— 1(B) - h(a
— F(b) — F(a)
b
- / f(z)da

O]

Theorem 5.12 (Taylor’s Theorem with remainder an integral). Let f(")(z) be
continuous for z € [0, h]. Then

1 f(nfl) (0)

f(h):f(0)+"‘+w+Rn

where
hn
(n—1)!

R, =

/1(1 — )" L) (¢h)de
0

Proof. Substitution u = th.

1

h
= — )" ) () du

Integrating by parts now, we get:

B hn—lf(n—l) (0) 1

h
_un—2 (n—l)u u
gy ) (=D

Hn = (n—1)! (n—

Rn—l
If we integrate by parts n — 1 times we arrive at:

B hn—lf(n—l) (0)

Fn = (n—1)!

h
b0+ [

O]

Now we can get the Cauchy & Lagrange form of the remainder. However note that the
proof above uses continuity of (™ not just mere existence as in section 3. But first we
need to prove:
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3 c € (a,b) such that

[ stz =g [ o

Theorem 5.13. f,g : [a,b] — R continuous with g(z) # 0V = € (a,b). Then

~

Note. If we take g(z) = 1 we get

b
/ f(@)dz = £(e)(b - a)

A
PO

7.

=

?a-_

Proof. We're going to use Cauchy’s MVT (Theorem 3.7).

F(w)Z/:fg, G(m>=/;g

Theorem 3.7 implies 3 ¢ € (a,b) such that

([ 19)9te)= 00 [

Since g(c) # 0 we simplify and we’re done.

Now we want to apply this to

n 1
(n}il)! /0 (1 — )" L ) (¢h)dt

n =
First we use Theorem 5.13 with g = 1, to get

h’n

m(l —6)"~" " (6n)

Ry,
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(0 € (0,1)), which is Cauchy’s form of remainder!

To get Lagrange, we use Theorem 5.13 with g(¢) = (1 —¢)"~! which is > 0 for ¢ € (0, 1).
Therefore 3 6 € (0, 1) such that

and .
_1

/1(1 — )" ldt = _a=9"
0

n

0 n

which is Lagrange’s form of the remainder!

5.1 Improper Integrals (infinite integrals)

Definition. Suppose f : [a,00) — R integrable (and bounded) on every interval
[a, R] and that as R — oo

/aRf(x)dx — 1

Then we say that [ f(x)dx exists or converges and that its value is I. If faR d
does not tend to a limit, we say that faoo f(z)dx diverges. A similar definition applies

to [ f(z)dz. If
/:Of_zl and /_;f_z2

/ f=h+1b

(independent of the particular value of a).

we write

e N
Note. This last bit is not the same as saying that

lim /_I;f(x)dx

R—o0

exists. It is stronger: for example
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Example. [° g—f converges if and only if £ > 1. Indeed, if k # 1 then

/R dﬁ B :l?l_k
1 $k N 1-k%
and as R — oo this limit is finite if and only if £ > 1. If k =1,

R
d
/ —a::logR—>oo
1 X

|

. 1-k

Remarks

(1) ﬁ continuous on [4, 1] for any § > 0, and

1
1 1
—dz = 2Vz|, =2 -2V = 2
/6\/5 s

as 6 — 0.

% is unbounded on (0, 1].

/ldx—lim T,
o VT =0)s VT
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Exercise: give a general definition for cases like this.

Ldz . Ldz
— = lim —
0 X 0—0 5 X
= lim (log 215
fizy (g 2l
= lim(log1 — log §
lim(log 1 —logd)

does not exist.

If f>0and g >0, for x > a and

with K a constant, then

[e.9] o
/ g converges — / f converges
a a

/aoofSK/aoog
/aRf<K/aRg

The function R — faR f is increasing (f > 0) and bounded above (since [ g
converges). Take | = supps, faR f < o0, and check that

R
g [ =t

Ro
f>l—c¢

and

Just note that

Given € > 0, 3 Ry such that

a

R Ro
/ fZ/ >1l—¢

R
:>0§l—/ f<e

Thus if R > Ry,
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12 Z
Example. fooo e Tdx. Note e~ < e 2 for > 1. Note that

R
_Z
/ e 2dx =
1
2

oo T
v .
hence o € % converges

1
2

—

[e_% — e_g] — €

O |

2

(3) We know that if ) a,, converges, then a,, — 0. faoo f converges may not imply that
f—=0.

Example.

2
(n+1)2
nH)Q converges, fo f converges. But f(n) =1,s0 f 4 0.

Area(A) =

so since Y

5.2 The Integral Test

Theorem 5.14 (integral test). Let f(z) be a positive decreasing function for z > 1.
Then

(1) The integral [° f(z)dz and the series > 7° f(n) both converge or diverge.

/ f(x

(2) Asn — oo,

tends to a limit [ such that 0 <1 < f(1)
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[ Note. f decreasing — f integrable on every bounded subinterval by Theorem }
5.4.

Proof. If n — 1 < x <n, then

fin=1) = f(x) = f(n)

hence
fln—1)> / @)z = f(m) (+)
Adding
n—1 n n
S50 = [ fade = 1) (+4)
1 1 2

From this claim (1) is clear. For the proof of (2) set

o(n) =3 F(r) - /1 " fa)de
Then "
o) = on = 1) = fn) = [ flaydaz <0

(using (%)) From (xx)
0<¢(n) < f(1)
Thus ¢(n) is decreasing and tends to a limit [ such that

0<1<f(1).
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Examples

(1) > ,%k converges if and only if k > 1 (). We saw that [}~ xik converges if and only
if k£ > 1, so from the integral test we get (x).

R
/2 l‘l(i)agc;:zj = log(log x”? = log(log R) — log(log2) — oo

as R — oo. Integral test implies

e}

1
%:nlogn

diverges.

Corollary 5.15 (Euler’s constant). As n — oo, 1+ 5 +---+ 1 —logn — ~
with 0 <~ < 1.

Proof. Set f(z) =1 and use Theorem 5.14. O

[ Note. An open problem asks “Is « irrational? (y & 0.577)” ]

We have seen: monotone functions and continuous functions are Riemann integrable.
We can generalize this a bit and say that piece-wise continuous functions are integrable.

e = - - o~ .

PP
f
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|
Definition. A function f : [a,b] — R is said to be piece-wise continuous if there is
a dissection

D ={a=ux9,x1,...,75p = b}

such that
(1) f is continuous on (z;—1,x;) V j

(2) The one-sided limits
lim  f(z), lim f(z)

T—=E =Ty

exist.

J

It is now an exercise to check that f is Riemann integrable: just check that f |[$j_l,wj} is
integrable for each j. (the values of f and the endpoints won’t really matter) and use
additivity of domain (property (6)).

Question: How large can the discontinuity set of f be while f is still Riemann integrable?

Recall the example:
=2

1
) =417 q
/(@) {0 otherwise

on [0,1].

[ Note. What follows is non-examinable. j

Answer: Henri Lebesgue characterization of Riemann integrability: f : [a,b] — R
bounded. Then f is Riemann integrable if and only if the set of discontinuity points has
MEASUTe ZET0.

~

Definition. Let [(I) be the length of an interval I. A subset A C R is said to have
measure zero if for each € > 0, 3 a countable collection of intervals I; such that

AC ij
j=1

and

ZZ(I]) <e€

J
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Lemma. (1) Every countable set has measure zero.
(2) If B has measure zero and A C B, then A has measure zero.

(3) If Ay has measure zero V k € N, then (J; .y A also has measure zero.

Oscillation of f

I interval:

wy(I) =sup f — irIlff
I
oscillation of f at a point:

wi(z) = ;i_r}(l)wf(m —c,x+e¢)

Lemma. f is continuous at x if and only if wy(x) = 0.

Proof. Exercise. O

Brief Sketch of Lebesgue’s criteria
D = {x € [a,b] : f discontinuous at z} = {z : ws(x) > 0}
N(@) = o wy(x) = o}
D= N <1)
- k
Required to prove: D has measure zero. Let € > 0 be given, 3 D such that

Ex

> wi([zj1,2]) (@ — 2;-1)S(f, D) = s(f,D) < >
j=1

F={j:(zj-1,2;) N N(a) # 0}
then for each j € F,
wi([zj—1,5]) = «

e
— Y (w5 —z1) < > wpllrj1,2)) (@ —250) < >
jEF jEF
€
E . . —
Z(% zj-1) < 5
JEF
These cover N(a) except perhaps for {xg,z1,...,2,}. But these can be covered by

intervals of total length < § hence N () can be covered by total length < e.
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For the other direction, let £ > 0 be given. N(g) C D, so N(g) has measure zero. N(g)
is closed and bounded hence it can be covered by finitely many open intervals of total
length < ¢.

m
K =[a,0]\ | JU;
i=1
compact so it can be covered by finitely many intervals J; such that

Wf(Jj) < €.
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